Enhanced Fuzzy-based Local Information Algorithm for Sonar Image Segmentation.

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Avi Abu, Roee Diamant
{"title":"Enhanced Fuzzy-based Local Information Algorithm for Sonar Image Segmentation.","authors":"Avi Abu, Roee Diamant","doi":"10.1109/TIP.2019.2930148","DOIUrl":null,"url":null,"abstract":"<p><p>The recent boost in undersea operations has led to the development of high-resolution sonar systems mounted on autonomous vehicles. These vehicles are used to scan the seafloor in search of different objects such as sunken ships, archaeological sites, and submerged mines. An important part of the detection operation is the segmentation of sonar images, where the object's highlight and shadow are distinguished from the seabed background. In this work, we focus on the automatic segmentation of sonar images. We present our enhanced fuzzybased with Kernel metric (EnFK) algorithm for the segmentation of sonar images which, in an attempt to improve segmentation accuracy, introduces two new fuzzy terms of local spatial and statistical information. Our algorithm includes a preliminary de-noising algorithm which, together with the original image, feeds into the segmentation procedure to avoid trapping to local minima and to improve convergence. The result is a segmentation procedure that specifically suits the intensity inhomogeneity and the complex seabed texture of sonar images. We tested our approach using simulated images, real sonar images, and sonar images that we created in two different sea experiments, using multibeam sonar and synthetic aperture sonar. The results show accurate segmentation performance that is far beyond the stateof-the-art results.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2930148","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The recent boost in undersea operations has led to the development of high-resolution sonar systems mounted on autonomous vehicles. These vehicles are used to scan the seafloor in search of different objects such as sunken ships, archaeological sites, and submerged mines. An important part of the detection operation is the segmentation of sonar images, where the object's highlight and shadow are distinguished from the seabed background. In this work, we focus on the automatic segmentation of sonar images. We present our enhanced fuzzybased with Kernel metric (EnFK) algorithm for the segmentation of sonar images which, in an attempt to improve segmentation accuracy, introduces two new fuzzy terms of local spatial and statistical information. Our algorithm includes a preliminary de-noising algorithm which, together with the original image, feeds into the segmentation procedure to avoid trapping to local minima and to improve convergence. The result is a segmentation procedure that specifically suits the intensity inhomogeneity and the complex seabed texture of sonar images. We tested our approach using simulated images, real sonar images, and sonar images that we created in two different sea experiments, using multibeam sonar and synthetic aperture sonar. The results show accurate segmentation performance that is far beyond the stateof-the-art results.

基于模糊局部信息的声纳图像分割增强算法
最近,海底作业的发展带动了安装在自动驾驶车辆上的高分辨率声纳系统的开发。这些车辆用于扫描海底,寻找不同的物体,如沉船、考古遗址和水下地雷。探测操作的一个重要部分是分割声纳图像,将物体的亮点和阴影与海底背景区分开来。在这项工作中,我们的重点是声纳图像的自动分割。为了提高分割精度,我们引入了两个新的局部空间和统计信息模糊项。我们的算法包括一个初步的去噪算法,该算法与原始图像一起输入到分割程序中,以避免陷入局部最小值并提高收敛性。因此,这种分割程序特别适合声纳图像的强度不均匀性和复杂的海底纹理。我们使用模拟图像、真实声纳图像以及我们在两个不同的海上实验中使用多波束声纳和合成孔径声纳创建的声纳图像对我们的方法进行了测试。结果表明,该方法的精确分割性能远远超过了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信