Youfa Liu, Weiping Tu, Bo Du, Lefei Zhang, Dacheng Tao
{"title":"Homologous Component Analysis for Domain Adaptation.","authors":"Youfa Liu, Weiping Tu, Bo Du, Lefei Zhang, Dacheng Tao","doi":"10.1109/TIP.2019.2929421","DOIUrl":null,"url":null,"abstract":"<p><p>Covariate shift assumption based domain adaptation approaches usually utilize only one common transformation to align marginal distributions and make conditional distributions preserved. However, one common transformation may cause loss of useful information, such as variances and neighborhood relationship in both source and target domain. To address this problem, we propose a novel method called homologous component analysis (HCA) where we try to find two totally different but homologous transformations to align distributions with side information and make conditional distributions preserved. As it is hard to find a closed form solution to the corresponding optimization problem, we solve them by means of the alternating direction minimizing method (ADMM) in the context of Stiefel manifolds. We also provide a generalization error bound for domain adaptation in semi-supervised case and two transformations can help to decrease this upper bound more than only one common transformation does. Extensive experiments on synthetic and real data show the effectiveness of the proposed method by comparing its classification accuracy with the state-of-the-art methods and numerical evidence on chordal distance and Frobenius distance shows that resulting optimal transformations are different.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2929421","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Covariate shift assumption based domain adaptation approaches usually utilize only one common transformation to align marginal distributions and make conditional distributions preserved. However, one common transformation may cause loss of useful information, such as variances and neighborhood relationship in both source and target domain. To address this problem, we propose a novel method called homologous component analysis (HCA) where we try to find two totally different but homologous transformations to align distributions with side information and make conditional distributions preserved. As it is hard to find a closed form solution to the corresponding optimization problem, we solve them by means of the alternating direction minimizing method (ADMM) in the context of Stiefel manifolds. We also provide a generalization error bound for domain adaptation in semi-supervised case and two transformations can help to decrease this upper bound more than only one common transformation does. Extensive experiments on synthetic and real data show the effectiveness of the proposed method by comparing its classification accuracy with the state-of-the-art methods and numerical evidence on chordal distance and Frobenius distance shows that resulting optimal transformations are different.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.