Purab Ranjan Sutradhar;Sathwika Bavikadi;Sai Manoj Pudukotai Dinakarrao;Mark A. Indovina;Amlan Ganguly
{"title":"3DL-PIM: A Look-Up Table Oriented Programmable Processing in Memory Architecture Based on the 3-D Stacked Memory for Data-Intensive Applications","authors":"Purab Ranjan Sutradhar;Sathwika Bavikadi;Sai Manoj Pudukotai Dinakarrao;Mark A. Indovina;Amlan Ganguly","doi":"10.1109/TETC.2023.3293140","DOIUrl":null,"url":null,"abstract":"Memory-centric computing systems have demonstrated superior performance and efficiency in memory-intensive applications compared to state-of-the-art CPUs and GPUs. 3-D stacked DRAM architectures unlock higher I/O data bandwidth than the traditional 2-D memory architecture and therefore are better suited for incorporating memory-centric processors. However, merely integrating high-precision ALUs in the 3-D stacked memory does not ensure an optimized design since such a design can only achieve a limited utilization of the internal bandwidth of a memory chip and limited operational parallelization. To address this, we propose 3DL-PIM, a 3-D stacked memory-based Processing in Memory (PIM) architecture that locates a plurality of Look-up Table (LUT)-based low-footprint Processing Elements (PE) within the memory banks in order to achieve high parallel computing performance by maximizing data-bandwidth utilization. Instead of relying on the traditional logic-based ALUs, the PEs are formed by clustering a group of programmable LUTs and therefore can be programmed on-the-fly to perform various logic/arithmetic operations. Our simulations show that 3DL-PIM can achieve respectively up to 2.6× higher processing performance at 2.65× higher area efficiency compared to a state-of-the-art 3-D stacked memory-based accelerator.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 1","pages":"60-72"},"PeriodicalIF":5.1000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10181127/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Memory-centric computing systems have demonstrated superior performance and efficiency in memory-intensive applications compared to state-of-the-art CPUs and GPUs. 3-D stacked DRAM architectures unlock higher I/O data bandwidth than the traditional 2-D memory architecture and therefore are better suited for incorporating memory-centric processors. However, merely integrating high-precision ALUs in the 3-D stacked memory does not ensure an optimized design since such a design can only achieve a limited utilization of the internal bandwidth of a memory chip and limited operational parallelization. To address this, we propose 3DL-PIM, a 3-D stacked memory-based Processing in Memory (PIM) architecture that locates a plurality of Look-up Table (LUT)-based low-footprint Processing Elements (PE) within the memory banks in order to achieve high parallel computing performance by maximizing data-bandwidth utilization. Instead of relying on the traditional logic-based ALUs, the PEs are formed by clustering a group of programmable LUTs and therefore can be programmed on-the-fly to perform various logic/arithmetic operations. Our simulations show that 3DL-PIM can achieve respectively up to 2.6× higher processing performance at 2.65× higher area efficiency compared to a state-of-the-art 3-D stacked memory-based accelerator.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.