Exploiting Ordinal Class Structure in Multiclass Classification: Application to Ovarian Cancer

Burook Misganaw, M. Vidyasagar
{"title":"Exploiting Ordinal Class Structure in Multiclass Classification: Application to Ovarian Cancer","authors":"Burook Misganaw, M. Vidyasagar","doi":"10.1109/LLS.2015.2451291","DOIUrl":null,"url":null,"abstract":"In multiclass machine learning problems, one needs to distinguish between the nominal labels that do not have any natural ordering and the ordinal labels that are ordered. Ordinal labels are pervasive in biology, and some examples are given here. In this note, we point out the importance of making use of the order information when it is inherent to the problem. We demonstrate that algorithms that use this additional information outperform the algorithms that do not, on a case study of assigning one of four labels to the ovarian cancer patients on the basis of their time of progression-free survival. As an aside, it is also pointed out that the algorithms that make use of ordering information require fewer data normalizations. This aspect is important in biological applications, where data are plagued by variations in platforms and protocols, batch effects, and so on.","PeriodicalId":87271,"journal":{"name":"IEEE life sciences letters","volume":"1 1","pages":"15-18"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LLS.2015.2451291","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE life sciences letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LLS.2015.2451291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In multiclass machine learning problems, one needs to distinguish between the nominal labels that do not have any natural ordering and the ordinal labels that are ordered. Ordinal labels are pervasive in biology, and some examples are given here. In this note, we point out the importance of making use of the order information when it is inherent to the problem. We demonstrate that algorithms that use this additional information outperform the algorithms that do not, on a case study of assigning one of four labels to the ovarian cancer patients on the basis of their time of progression-free survival. As an aside, it is also pointed out that the algorithms that make use of ordering information require fewer data normalizations. This aspect is important in biological applications, where data are plagued by variations in platforms and protocols, batch effects, and so on.
多类分类中序类结构的开发:在卵巢癌中的应用
在多类机器学习问题中,人们需要区分没有任何自然排序的标称标签和有序的有序标签。序数标签在生物学中普遍存在,这里给出一些例子。在本文中,我们指出了当订单信息是问题的固有属性时,使用订单信息的重要性。我们证明,使用这些额外信息的算法优于不使用这些信息的算法,在一个案例研究中,根据卵巢癌患者的无进展生存时间为其分配四种标签之一。此外,还指出,利用排序信息的算法需要较少的数据规范化。这方面在生物应用程序中很重要,因为在生物应用程序中,数据受到平台和协议、批处理效果等变化的困扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信