AuFe3@Pd/γ-Fe2O3 Nanosheets as an In Situ Regenerable and Highly Efficient Hydrogenation Catalyst

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2023-04-19 DOI:10.1021/acsnano.3c00745
Zongshan Zhao, Yanhen Wu, Wei Ran, Huachao Zhao, Xiaotian Yu, Jie-fang Sun, Guangzhi He, Jingfu Liu, Rui Liu* and Guibin Jiang, 
{"title":"AuFe3@Pd/γ-Fe2O3 Nanosheets as an In Situ Regenerable and Highly Efficient Hydrogenation Catalyst","authors":"Zongshan Zhao,&nbsp;Yanhen Wu,&nbsp;Wei Ran,&nbsp;Huachao Zhao,&nbsp;Xiaotian Yu,&nbsp;Jie-fang Sun,&nbsp;Guangzhi He,&nbsp;Jingfu Liu,&nbsp;Rui Liu* and Guibin Jiang,&nbsp;","doi":"10.1021/acsnano.3c00745","DOIUrl":null,"url":null,"abstract":"<p >Heterogenous Pd catalysts play a pivotal role in the chemical industry; however, it is plagued by S<sup>2–</sup> or other strong adsorbates inducing surface poisoning long term. Herein, we report the development of AuFe<sub>3</sub>@Pd/γ-Fe<sub>2</sub>O<sub>3</sub> nanosheets (NSs) as an <i>in situ</i> regenerable and highly active hydrogenation catalyst. Upon poisoning, the Pd monolayer sites could be fully and oxidatively regenerated under ambient conditions, which is initiated by ?OH radicals from surface defect/Fe<sub>Tetra</sub> vacancy-rich γ-Fe<sub>2</sub>O<sub>3</sub> NSs via the Fenton-like pathway. Both experimental and theoretical analyses demonstrate that for the electronic and geometric effect, the 2–3 nm AuFe<sub>3</sub> intermetallic nanocluster core promotes the adsorption of reactant onto Pd sites; in addition, it lowers Pd’s affinity for ?OH radicals to enhance their stability during oxidative regeneration. When packed into a quartz sand fixed-bed catalyst column, the AuFe<sub>3</sub>@Pd/γ-Fe<sub>2</sub>O<sub>3</sub> NSs are highly active in hydrogenating the carbon–halogen bond, which comprises a crucial step for the removal of micropollutants in drinking water and recovery of resources from heavily polluted wastewater, and withstand ten rounds of regeneration. By maximizing the use of ultrathin metal oxide NSs and intermetallic nanocluster and monolayer Pd, the current study demonstrates a comprehensive strategy for developing sustainable Pd catalysts for liquid catalysis.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"17 9","pages":"8499–8510"},"PeriodicalIF":15.8000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.3c00745","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogenous Pd catalysts play a pivotal role in the chemical industry; however, it is plagued by S2– or other strong adsorbates inducing surface poisoning long term. Herein, we report the development of AuFe3@Pd/γ-Fe2O3 nanosheets (NSs) as an in situ regenerable and highly active hydrogenation catalyst. Upon poisoning, the Pd monolayer sites could be fully and oxidatively regenerated under ambient conditions, which is initiated by ?OH radicals from surface defect/FeTetra vacancy-rich γ-Fe2O3 NSs via the Fenton-like pathway. Both experimental and theoretical analyses demonstrate that for the electronic and geometric effect, the 2–3 nm AuFe3 intermetallic nanocluster core promotes the adsorption of reactant onto Pd sites; in addition, it lowers Pd’s affinity for ?OH radicals to enhance their stability during oxidative regeneration. When packed into a quartz sand fixed-bed catalyst column, the AuFe3@Pd/γ-Fe2O3 NSs are highly active in hydrogenating the carbon–halogen bond, which comprises a crucial step for the removal of micropollutants in drinking water and recovery of resources from heavily polluted wastewater, and withstand ten rounds of regeneration. By maximizing the use of ultrathin metal oxide NSs and intermetallic nanocluster and monolayer Pd, the current study demonstrates a comprehensive strategy for developing sustainable Pd catalysts for liquid catalysis.

Abstract Image

AuFe3@Pd/γ-Fe2O3纳米片作为原位可再生高效加氢催化剂
多相钯催化剂在化学工业中占有举足轻重的地位;然而,它受到S2 -或其他强吸附物的困扰,导致表面长期中毒。本文报道了AuFe3@Pd/γ-Fe2O3纳米片(NSs)作为一种原位可再生的高活性加氢催化剂的开发。中毒后,Pd单层位点在环境条件下可以被氧化再生,这是由来自表面缺陷/富FeTetra空位的γ-Fe2O3 NSs的?OH自由基通过芬顿样途径引发的。实验和理论分析均表明,在电子和几何效应方面,2-3 nm的AuFe3金属间纳米簇核促进了反应物在Pd位点上的吸附;此外,它还能降低Pd对?OH自由基的亲和力,增强其在氧化再生过程中的稳定性。当填充在石英砂固定床催化剂柱中时,AuFe3@Pd/γ-Fe2O3 NSs具有高活性的碳-卤素键氢化反应,这是去除饮用水中微量污染物和重污染废水资源回收的关键步骤,并且可以承受十轮再生。通过最大限度地利用超薄金属氧化物NSs和金属间纳米团簇和单层Pd,本研究展示了一种开发可持续液体催化Pd催化剂的综合策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信