Fullerene–Graphene Acceptor Drives Ultrafast Carrier Dynamics for Sustainable CdS Photocatalytic Hydrogen Evolution

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenchao Wang, Ying Tao, Jinchen Fan, Zhiping Yan, Huan Shang, David Lee Phillips, Ming Chen, Guisheng Li
{"title":"Fullerene–Graphene Acceptor Drives Ultrafast Carrier Dynamics for Sustainable CdS Photocatalytic Hydrogen Evolution","authors":"Wenchao Wang,&nbsp;Ying Tao,&nbsp;Jinchen Fan,&nbsp;Zhiping Yan,&nbsp;Huan Shang,&nbsp;David Lee Phillips,&nbsp;Ming Chen,&nbsp;Guisheng Li","doi":"10.1002/adfm.202201357","DOIUrl":null,"url":null,"abstract":"<p>Ultrafast excited-state decay and intrinsic charge carrier recombination restrain the photoactivity enhancement for solar-to-H<sub>2</sub> production. Here, a CdS-fullerene/graphene (CdS-F/G) photocatalyst is synthesized for enhancing visible-light-driven hydrogen generation from earth-abundant water. The CdS-F/G shows ultrafast interfacial electrons/holes transfer and holes self-trapping process in photocatalysis. The in-situ dynamic study from transient absorption spectroscopy reveals the sub-microsecond-lived excited states (≈172.6 ns), interfacial electron transfer (≈30.3 ps), and hole trapping (≈44.0 ps) in the CdS-F/G photocatalyst. The efficient active species transportation and prolonged lifetime significantly enhance the charge separation state survival, increasing the photoactivity and photostability. Consequently, visible-light activity enhancement (&gt;400%) of H<sub>2</sub> evolution reaction (HER) is obtained at the CdS-F/G photocatalyst with high stability (&gt;36 h). The 127.2 µmol h<sup>−1</sup> g<sup>−1</sup> performance corresponding to a quantum efficiency of 7.24% at 420 nm is not only higher than the case of pristine CdS (29.2 µmol h<sup>−1</sup> g<sup>−1</sup>) but also much higher than that of CdS-Pt photocatalyst (73.8 µmol h<sup>−1</sup> g<sup>−1</sup>). The cost-effective CdS-F/G photocatalyst exhibits a great potential for sustainable and high-efficiency photocatalytic water splitting into clean energy carriers. Moreover, the optimized electronic structure associated with interfacial electrons/holes transfer and holes self-trapping promotes overall water splitting for H<sub>2</sub> and O<sub>2</sub> generation.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"32 23","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202201357","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 44

Abstract

Ultrafast excited-state decay and intrinsic charge carrier recombination restrain the photoactivity enhancement for solar-to-H2 production. Here, a CdS-fullerene/graphene (CdS-F/G) photocatalyst is synthesized for enhancing visible-light-driven hydrogen generation from earth-abundant water. The CdS-F/G shows ultrafast interfacial electrons/holes transfer and holes self-trapping process in photocatalysis. The in-situ dynamic study from transient absorption spectroscopy reveals the sub-microsecond-lived excited states (≈172.6 ns), interfacial electron transfer (≈30.3 ps), and hole trapping (≈44.0 ps) in the CdS-F/G photocatalyst. The efficient active species transportation and prolonged lifetime significantly enhance the charge separation state survival, increasing the photoactivity and photostability. Consequently, visible-light activity enhancement (>400%) of H2 evolution reaction (HER) is obtained at the CdS-F/G photocatalyst with high stability (>36 h). The 127.2 µmol h−1 g−1 performance corresponding to a quantum efficiency of 7.24% at 420 nm is not only higher than the case of pristine CdS (29.2 µmol h−1 g−1) but also much higher than that of CdS-Pt photocatalyst (73.8 µmol h−1 g−1). The cost-effective CdS-F/G photocatalyst exhibits a great potential for sustainable and high-efficiency photocatalytic water splitting into clean energy carriers. Moreover, the optimized electronic structure associated with interfacial electrons/holes transfer and holes self-trapping promotes overall water splitting for H2 and O2 generation.

Abstract Image

富勒烯-石墨烯受体驱动可持续CdS光催化析氢的超快载流子动力学
超快激发态衰变和本征载流子复合抑制了太阳能制氢的光活性增强。本文合成了一种cds -富勒烯/石墨烯(CdS-F/G)光催化剂,用于增强从地球上丰富的水中产生可见光驱动的氢。CdS-F/G在光催化过程中表现出超快的界面电子/空穴转移和空穴自捕获过程。瞬态吸收光谱的原位动力学研究揭示了CdS-F/G光催化剂的亚微秒寿命激发态(≈172.6 ns)、界面电子转移(≈30.3 ps)和空穴捕获(≈44.0 ps)。有效的活性物质运输和延长的寿命显著提高了电荷分离态的存活率,提高了光活性和光稳定性。结果表明,CdS- f /G光催化剂具有较高的稳定性(>36 h), H2析出反应的可见光活性增强(>400%),在420 nm处的量子效率为7.24%,其127.2µmol h−1 G−1的性能不仅高于原始CdS(29.2µmol h−1 G−1),而且远高于CdS- pt光催化剂(73.8µmol h−1 G−1)。性价比高的CdS-F/G光催化剂在可持续、高效的光催化水分解为清洁能源载体方面显示出巨大的潜力。此外,与界面电子/空穴转移和空穴自捕获相关的优化电子结构促进了H2和O2生成的整体水分裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信