Enhancing Built-in Electric Fields for Efficient Photocatalytic Hydrogen Evolution by Encapsulating C60 Fullerene into Zirconium-Based Metal-Organic Frameworks

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Liping Liu, Dr. Haibing Meng, Dr. Yongqiang Chai, Dr. Xianjie Chen, Dr. Jingyi Xu, Dr. Xiaolong Liu, Dr. Weixu Liu, Prof. Dirk M. Guldi, Prof. Yongfa Zhu
{"title":"Enhancing Built-in Electric Fields for Efficient Photocatalytic Hydrogen Evolution by Encapsulating C60 Fullerene into Zirconium-Based Metal-Organic Frameworks","authors":"Dr. Liping Liu,&nbsp;Dr. Haibing Meng,&nbsp;Dr. Yongqiang Chai,&nbsp;Dr. Xianjie Chen,&nbsp;Dr. Jingyi Xu,&nbsp;Dr. Xiaolong Liu,&nbsp;Dr. Weixu Liu,&nbsp;Prof. Dirk M. Guldi,&nbsp;Prof. Yongfa Zhu","doi":"10.1002/anie.202217897","DOIUrl":null,"url":null,"abstract":"<p>High-efficiency photocatalysts based on metal-organic frameworks (MOFs) are often limited by poor charge separation and slow charge-transfer kinetics. Herein, a novel MOF photocatalyst is successfully constructed by encapsulating C<sub>60</sub> into a nano-sized zirconium-based MOF, NU-901. By virtue of host-guest interactions and uneven charge distribution, a substantial electrostatic potential difference is set-up in C<sub>60</sub>@NU-901. The direct consequence is a robust built-in electric field, which tends to be 10.7 times higher in C<sub>60</sub>@NU-901 than that found in NU-901. In the catalyst, photogenerated charge carriers are efficiently separated and transported to the surface. For example, photocatalytic hydrogen evolution reaches 22.3 mmol g<sup>−1</sup> h<sup>−1</sup> for C<sub>60</sub>@NU-901, which is among the highest values for MOFs. Our concept of enhancing charge separation by harnessing host-guest interactions constitutes a promising strategy to design photocatalysts for efficient solar-to-chemical energy conversion.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"62 11","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202217897","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

High-efficiency photocatalysts based on metal-organic frameworks (MOFs) are often limited by poor charge separation and slow charge-transfer kinetics. Herein, a novel MOF photocatalyst is successfully constructed by encapsulating C60 into a nano-sized zirconium-based MOF, NU-901. By virtue of host-guest interactions and uneven charge distribution, a substantial electrostatic potential difference is set-up in C60@NU-901. The direct consequence is a robust built-in electric field, which tends to be 10.7 times higher in C60@NU-901 than that found in NU-901. In the catalyst, photogenerated charge carriers are efficiently separated and transported to the surface. For example, photocatalytic hydrogen evolution reaches 22.3 mmol g−1 h−1 for C60@NU-901, which is among the highest values for MOFs. Our concept of enhancing charge separation by harnessing host-guest interactions constitutes a promising strategy to design photocatalysts for efficient solar-to-chemical energy conversion.

Abstract Image

通过将C60富勒烯包封在锆基金属有机框架中增强内建电场以实现高效光催化析氢
基于金属-有机骨架(MOFs)的高效光催化剂往往受到电荷分离不良和电荷转移动力学缓慢的限制。本文通过将C60包封在纳米锆基MOF NU-901中,成功构建了一种新型MOF光催化剂。由于主客体相互作用和电荷分布不均匀,在C60@NU-901中产生了较大的静电电位差。其直接后果是产生强大的内置电场,C60@NU-901中的电场往往比NU-901中的电场高10.7倍。在催化剂中,光产生的载流子被有效地分离并传输到表面。例如,C60@NU-901的光催化析氢达到22.3 mmol g−1 h−1,这是mof的最高值之一。我们通过利用主客体相互作用来增强电荷分离的概念构成了一种很有前途的策略,可以设计用于高效太阳能到化学能转换的光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信