A Monocular Variable Magnifications 3D Laparoscope System Using Double Liquid Lenses

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Fan Mao;Tianqi Huang;Longfei Ma;Xinran Zhang;Hongen Liao
{"title":"A Monocular Variable Magnifications 3D Laparoscope System Using Double Liquid Lenses","authors":"Fan Mao;Tianqi Huang;Longfei Ma;Xinran Zhang;Hongen Liao","doi":"10.1109/JTEHM.2023.3311022","DOIUrl":null,"url":null,"abstract":"During minimal invasive surgery (MIS), the laparoscope only provides a single viewpoint to the surgeon, leaving a lack of 3D perception. Many works have been proposed to obtain depth and 3D reconstruction by designing a new optical structure or by depending on the camera pose and image sequences. Most of these works modify the structure of the conventional laparoscopes and cannot provide 3D reconstruction of different magnification views. In this study, we propose a laparoscopic system based on double liquid lenses, which provide doctors with variable magnification rates, near observation, and real-time monocular 3D reconstruction. Our system composes of an optical structure that can obtain auto magnification change and autofocus without any physically moving element, and a deep learning network based on the Depth from Defocus (DFD) method, trained to suit inconsistent camera intrinsic situations and estimate depth from images of different focal lengths. The optical structure is portable and can be mounted on conventional laparoscopes. The depth estimation network estimates depth in real-time from monocular images of different focal lengths and magnification rates. Experiments show that our system provides a 0.68-1.44x zoom rate and can estimate depth from different magnification rates at 6fps. Monocular 3D reconstruction reaches at least 6mm accuracy. The system also provides a clear view even under 1mm close working distance. Ex-vivo experiments and implementation on clinical images prove that our system provides doctors with a magnified clear view of the lesion, as well as quick monocular depth perception during laparoscopy, which help surgeons get better detection and size diagnosis of the abdomen during laparoscope surgeries.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"32-42"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10237256","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10237256/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

During minimal invasive surgery (MIS), the laparoscope only provides a single viewpoint to the surgeon, leaving a lack of 3D perception. Many works have been proposed to obtain depth and 3D reconstruction by designing a new optical structure or by depending on the camera pose and image sequences. Most of these works modify the structure of the conventional laparoscopes and cannot provide 3D reconstruction of different magnification views. In this study, we propose a laparoscopic system based on double liquid lenses, which provide doctors with variable magnification rates, near observation, and real-time monocular 3D reconstruction. Our system composes of an optical structure that can obtain auto magnification change and autofocus without any physically moving element, and a deep learning network based on the Depth from Defocus (DFD) method, trained to suit inconsistent camera intrinsic situations and estimate depth from images of different focal lengths. The optical structure is portable and can be mounted on conventional laparoscopes. The depth estimation network estimates depth in real-time from monocular images of different focal lengths and magnification rates. Experiments show that our system provides a 0.68-1.44x zoom rate and can estimate depth from different magnification rates at 6fps. Monocular 3D reconstruction reaches at least 6mm accuracy. The system also provides a clear view even under 1mm close working distance. Ex-vivo experiments and implementation on clinical images prove that our system provides doctors with a magnified clear view of the lesion, as well as quick monocular depth perception during laparoscopy, which help surgeons get better detection and size diagnosis of the abdomen during laparoscope surgeries.
双液体透镜单眼可变放大率三维腹腔镜系统
在微创手术(MIS)中,腹腔镜仅为外科医生提供单一视点,缺乏3D感知。通过设计新的光学结构或依赖相机姿势和图像序列来获得深度和三维重建的许多工作已经被提出。这些工作大多修改了传统腹腔镜的结构,无法提供不同放大视图的三维重建。在本研究中,我们提出了一种基于双液体透镜的腹腔镜系统,为医生提供可变放大倍率,近距离观察和实时单眼三维重建。我们的系统由一个光学结构组成,该光学结构可以在没有任何物理移动元素的情况下获得自动放大和自动对焦,以及一个基于离焦深度(DFD)方法的深度学习网络,该网络可以适应相机内部不一致的情况,并从不同焦距的图像中估计深度。这种光学结构是便携式的,可以安装在传统的腹腔镜上。深度估计网络从不同焦距和倍率的单眼图像中实时估计深度。实验表明,该系统可提供0.68-1.44倍的变焦率,并能在6fps下以不同的放大倍率估计深度。单目三维重建精度至少达到6mm。该系统还提供了一个清晰的视野,即使在1毫米的近距离工作。离体实验和临床图像的实现证明,我们的系统为医生提供了一个放大的病变清晰视图,以及腹腔镜下快速的单目深度感知,帮助医生在腹腔镜手术中更好地检测和诊断腹部大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信