Solar-to-H2O2 Energy Conversion by the Photothermal Effect of a Polymeric Photocatalyst via a Two-Channel Pathway

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2023-03-11 DOI:10.1002/cssc.202300015
Wei Liu, Run Xu, Weifeng Pan, Chao Li, Niu Huang, Prof. Yingping Huang, Prof. Liqun Ye
{"title":"Solar-to-H2O2 Energy Conversion by the Photothermal Effect of a Polymeric Photocatalyst via a Two-Channel Pathway","authors":"Wei Liu,&nbsp;Run Xu,&nbsp;Weifeng Pan,&nbsp;Chao Li,&nbsp;Niu Huang,&nbsp;Prof. Yingping Huang,&nbsp;Prof. Liqun Ye","doi":"10.1002/cssc.202300015","DOIUrl":null,"url":null,"abstract":"<p>With a view to using solar energy, the exploitation of near-infrared (NIR) light, which constitutes about 50 % of solar energy, in photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis remains challenging. In this study, resorcinol−formaldehyde (RF), which has a relatively low bandgap and high conductivity, is introduced for photothermal catalytic generation of H<sub>2</sub>O<sub>2</sub> under ambient conditions. Owing to the promoted surface charge transfer rate under high temperature, the photosynthetic yield reaches roughly 2000 μ<span>m</span> within 40 min under 400 mW cm<sup>−2</sup> irradiation with a solar-to-chemical conversion (SCC) efficiency of up to 0.19 % at 338 K under ambient conditions, exceeding the rate of photocatalysis with a cooling system by a factor of about 2.5. Notably, the H<sub>2</sub>O<sub>2</sub> produced by RF during photothermal process was formed via a two-channel pathway, leading to the overall promotion of H<sub>2</sub>O<sub>2</sub> formation. The resultant H<sub>2</sub>O<sub>2</sub> can be applied in situ for pollutant removal. This work offers a sustainable and economical route for the efficient formation of H<sub>2</sub>O<sub>2</sub>.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"16 12","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202300015","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

With a view to using solar energy, the exploitation of near-infrared (NIR) light, which constitutes about 50 % of solar energy, in photocatalytic H2O2 synthesis remains challenging. In this study, resorcinol−formaldehyde (RF), which has a relatively low bandgap and high conductivity, is introduced for photothermal catalytic generation of H2O2 under ambient conditions. Owing to the promoted surface charge transfer rate under high temperature, the photosynthetic yield reaches roughly 2000 μm within 40 min under 400 mW cm−2 irradiation with a solar-to-chemical conversion (SCC) efficiency of up to 0.19 % at 338 K under ambient conditions, exceeding the rate of photocatalysis with a cooling system by a factor of about 2.5. Notably, the H2O2 produced by RF during photothermal process was formed via a two-channel pathway, leading to the overall promotion of H2O2 formation. The resultant H2O2 can be applied in situ for pollutant removal. This work offers a sustainable and economical route for the efficient formation of H2O2.

Abstract Image

双通道聚合光催化剂光热效应下太阳能到h2o2的能量转换
从利用太阳能的角度来看,利用约占太阳能50%的近红外光(NIR)进行光催化H2O2合成仍然具有挑战性。本研究引入了间苯二酚-甲醛(RF)这种具有相对低带隙和高导电性的材料,在常温条件下光热催化生成H2O2。由于高温下表面电荷转移速率的提高,在400 mW cm - 2辐照下,在环境条件下,在338 K下,光化学转化效率高达0.19%,在40 min内的光合效率达到2000 μm左右,比在冷却系统下的光催化速率高出约2.5倍。值得注意的是,光热过程中RF产生的H2O2是通过双通道途径形成的,从而整体促进了H2O2的形成。生成的H2O2可用于原位去除污染物。这项工作为H2O2的高效生成提供了一条可持续和经济的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信