{"title":"Biomimetic Dendrimer–Peptide Conjugates for Early Multi-Target Therapy of Alzheimer's Disease by Inflammatory Microenvironment Modulation","authors":"Peixin Liu, Tongyu Zhang, Qinjun Chen, Chao Li, Yongchao Chu, Qin Guo, Yiwen Zhang, Wenxi Zhou, Hongyi Chen, Zheng Zhou, Yu Wang, Zhenhao Zhao, Yifan Luo, Xuwen Li, Haolin Song, Boyu Su, Chufeng Li, Tao Sun, Chen Jiang","doi":"10.1002/adma.202100746","DOIUrl":null,"url":null,"abstract":"<p>Current therapeutic strategies for Alzheimer's disease (AD) treatments mainly focus on β-amyloid (Aβ) targeting. However, such therapeutic strategies have limited clinical outcomes due to the chronic and irreversible impairment of the nervous system in the late stage of AD. Recently, inflammatory responses, manifested in oxidative stress and glial cell activation, have been reported as hallmarks in the early stages of AD. Based on the crosstalk between inflammatory response and brain cells, a reactive oxygen species (ROS)-responsive dendrimer–peptide conjugate (APBP) is devised to target the AD microenvironment and inhibit inflammatory responses at an early stage. With the modification of the targeting peptide, this nanoconjugate can efficiently deliver peptides to the infected regions and restore the antioxidant ability of neurons by activating the nuclear factor (erythroid-derived 2)-like 2 signaling pathway. Moreover, this multi-target strategy exhibits a synergistic function of ROS scavenging, promoting Aβ phagocytosis, and normalizing the glial cell phenotype. As a result, the nanoconjugate can reduce ROS level, decrease Aβ burden, alleviate glial cell activation, and eventually enhance cognitive functions in APPswe/PSEN1dE9 model mice. These results indicate that APBP can be a promising candidate for the multi-target treatment of AD.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"33 26","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/adma.202100746","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202100746","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 41
Abstract
Current therapeutic strategies for Alzheimer's disease (AD) treatments mainly focus on β-amyloid (Aβ) targeting. However, such therapeutic strategies have limited clinical outcomes due to the chronic and irreversible impairment of the nervous system in the late stage of AD. Recently, inflammatory responses, manifested in oxidative stress and glial cell activation, have been reported as hallmarks in the early stages of AD. Based on the crosstalk between inflammatory response and brain cells, a reactive oxygen species (ROS)-responsive dendrimer–peptide conjugate (APBP) is devised to target the AD microenvironment and inhibit inflammatory responses at an early stage. With the modification of the targeting peptide, this nanoconjugate can efficiently deliver peptides to the infected regions and restore the antioxidant ability of neurons by activating the nuclear factor (erythroid-derived 2)-like 2 signaling pathway. Moreover, this multi-target strategy exhibits a synergistic function of ROS scavenging, promoting Aβ phagocytosis, and normalizing the glial cell phenotype. As a result, the nanoconjugate can reduce ROS level, decrease Aβ burden, alleviate glial cell activation, and eventually enhance cognitive functions in APPswe/PSEN1dE9 model mice. These results indicate that APBP can be a promising candidate for the multi-target treatment of AD.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.