Spatial and Temporal Quantification of Subaerial Volcanism From 1980 to 2019: Solid Products, Masses, and Average Eruptive Rates

IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Federico Galetto, Matthew E. Pritchard, Adrian J. Hornby, Esteban Gazel, Natalie M. Mahowald
{"title":"Spatial and Temporal Quantification of Subaerial Volcanism From 1980 to 2019: Solid Products, Masses, and Average Eruptive Rates","authors":"Federico Galetto,&nbsp;Matthew E. Pritchard,&nbsp;Adrian J. Hornby,&nbsp;Esteban Gazel,&nbsp;Natalie M. Mahowald","doi":"10.1029/2022RG000783","DOIUrl":null,"url":null,"abstract":"<p>Volcanism is one of the main mechanisms transferring mass and energy between the interior of the Earth and the Earth's surface. However, the global mass flux of lava, volcanic ash and explosive pyroclastic deposits is not well constrained. Here we review published estimates of the mass of the erupted products from 1980 to 2019 by a global compilation. We identified 1,064 magmatic eruptions that occurred between 1980 and 2019 from the Smithsonian Global Volcanism Program database. For each eruption, we reported both the total erupted mass and its partitioning into the different volcanic products. Using this data set, we quantified the temporal and spatial evolution of subaerial volcanism and its products from 1980 to 2019 at a global and regional scale. The mass of magma erupted in each analyzed decade ranged from 1.1–4.9 × 10<sup>13</sup> kg. Lava is the main subaerial erupted product representing ∼57% of the total erupted mass of magma. The products related to the biggest eruptions (Magnitude ≥6), with long recurrence times, can temporarily make explosive products more abundant than lava (e.g., decade 1990–1999). Twenty-three volcanoes produced ∼72% of the total mass, while two different sets of 15 volcanoes erupted &gt;70% of the total mass of either effusive or explosive products. At a global scale, the 10 and 40-year average eruptive rates calculated from 1980 to 2019 have the same magnitude as the long-term average eruptive rates (from thousand to millions of years), because in both cases rates are scaled for times comparable to the recurrence time of the biggest eruptions occurred.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"61 1","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022RG000783","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 4

Abstract

Volcanism is one of the main mechanisms transferring mass and energy between the interior of the Earth and the Earth's surface. However, the global mass flux of lava, volcanic ash and explosive pyroclastic deposits is not well constrained. Here we review published estimates of the mass of the erupted products from 1980 to 2019 by a global compilation. We identified 1,064 magmatic eruptions that occurred between 1980 and 2019 from the Smithsonian Global Volcanism Program database. For each eruption, we reported both the total erupted mass and its partitioning into the different volcanic products. Using this data set, we quantified the temporal and spatial evolution of subaerial volcanism and its products from 1980 to 2019 at a global and regional scale. The mass of magma erupted in each analyzed decade ranged from 1.1–4.9 × 1013 kg. Lava is the main subaerial erupted product representing ∼57% of the total erupted mass of magma. The products related to the biggest eruptions (Magnitude ≥6), with long recurrence times, can temporarily make explosive products more abundant than lava (e.g., decade 1990–1999). Twenty-three volcanoes produced ∼72% of the total mass, while two different sets of 15 volcanoes erupted >70% of the total mass of either effusive or explosive products. At a global scale, the 10 and 40-year average eruptive rates calculated from 1980 to 2019 have the same magnitude as the long-term average eruptive rates (from thousand to millions of years), because in both cases rates are scaled for times comparable to the recurrence time of the biggest eruptions occurred.

1980 - 2019年陆基火山活动的时空量化:固体产物、质量和平均喷发速率
火山活动是地球内部和地球表面之间传递质量和能量的主要机制之一。然而,熔岩、火山灰和爆炸性火山碎屑沉积物的全球质量通量并没有得到很好的约束。在这里,我们回顾了一项全球汇编对1980年至2019年喷发产物质量的公布估计。我们从史密森尼全球火山活动计划数据库中确定了1980年至2019年间发生的1064次岩浆喷发。对于每次喷发,我们都报告了总喷发质量及其划分为不同的火山产物。利用该数据集,在全球和区域尺度上量化了1980 - 2019年陆基火山活动及其产物的时空演化。在分析的每个十年中,岩浆喷发的质量在1.1-4.9 × 1013 kg之间。熔岩是主要的陆上喷发产物,占岩浆总喷发质量的57%。与最大的喷发(≥6级)相关的产物,具有较长的复发时间,可以暂时使爆炸产物比熔岩更丰富(如1990-1999年)。23座火山产生了约72%的总质量,而两组不同的15座火山喷发出的喷涌物或爆炸性产物占总质量的70%。在全球范围内,从1980年到2019年计算的10年和40年平均喷发率与长期平均喷发率(从数千年到数百万年)具有相同的量级,因为在这两种情况下,喷发率都是按与最大喷发发生的复发时间相当的倍数进行缩放的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews of Geophysics
Reviews of Geophysics 地学-地球化学与地球物理
CiteScore
50.30
自引率
0.80%
发文量
28
审稿时长
12 months
期刊介绍: Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信