{"title":"Distilled beverage aging: A review on aroma characteristics, maturation mechanisms, and artificial aging techniques","authors":"Lulu Wang, Shuang Chen, Yan Xu","doi":"10.1111/1541-4337.13080","DOIUrl":null,"url":null,"abstract":"<p>The market value of distilled beverage relies on its quality with a major contribution of distinctive and fascinating aromas. The aroma of distilled beverage is built on the basis of chemical components and can be modified through a series of physical and chemical processes such as aging. Revealing the hidden knowledge behind the evolution of numerous chemical components during these physicochemical processes in distilled beverages is not only significant but also challenging due to its complex system. In this review, the trends in the changes of associated aroma compounds over aging are proposed on the basis of understanding the relationship between chemical components and aroma profiles of numerous typical distilled beverages. The different aging systems, both classical platforms from Eastern countries (pottery jars) to Western countries (wood barrels), and modern platforms such as artificial aging technologies are outlined and compared with their respective applications. Optimizing aging processes is a challenging but imperative step, which warrants further fundamental knowledge from targeting aging-related molecules to the exploration of multitude physicochemical reaction mechanisms that occur during this process, such as the formation of potent odorant compounds in specific containers and environments, as well as mass transfer processes between solid and liquid interfaces. Understanding these maturation mechanisms of distilled beverages expressed by chemosensory signature holds promise for major improvements in future aging technologies that can efficiently yield stable and high-quality products.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"22 1","pages":"502-534"},"PeriodicalIF":14.1000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.13080","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
The market value of distilled beverage relies on its quality with a major contribution of distinctive and fascinating aromas. The aroma of distilled beverage is built on the basis of chemical components and can be modified through a series of physical and chemical processes such as aging. Revealing the hidden knowledge behind the evolution of numerous chemical components during these physicochemical processes in distilled beverages is not only significant but also challenging due to its complex system. In this review, the trends in the changes of associated aroma compounds over aging are proposed on the basis of understanding the relationship between chemical components and aroma profiles of numerous typical distilled beverages. The different aging systems, both classical platforms from Eastern countries (pottery jars) to Western countries (wood barrels), and modern platforms such as artificial aging technologies are outlined and compared with their respective applications. Optimizing aging processes is a challenging but imperative step, which warrants further fundamental knowledge from targeting aging-related molecules to the exploration of multitude physicochemical reaction mechanisms that occur during this process, such as the formation of potent odorant compounds in specific containers and environments, as well as mass transfer processes between solid and liquid interfaces. Understanding these maturation mechanisms of distilled beverages expressed by chemosensory signature holds promise for major improvements in future aging technologies that can efficiently yield stable and high-quality products.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.