Sensitivity and specificity of Monte Carlo based independent secondary dose computation for detecting modulation-related dose errors in intensity modulated radiotherapy.
Matthias Kowatsch, Philipp Szeverinski, Patrick Clemens, Thomas Künzler, Matthias Söhn, Markus Alber
{"title":"Sensitivity and specificity of Monte Carlo based independent secondary dose computation for detecting modulation-related dose errors in intensity modulated radiotherapy.","authors":"Matthias Kowatsch, Philipp Szeverinski, Patrick Clemens, Thomas Künzler, Matthias Söhn, Markus Alber","doi":"10.1016/j.zemedi.2023.10.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The recent availability of Monte Carlo based independent secondary dose calculation (ISDC) for patient-specific quality assurance (QA) of modulated radiotherapy requires the definition of appropriate, more sensitive action levels, since contemporary recommendations were defined for less accurate ISDC dose algorithms.</p><p><strong>Purpose: </strong>The objective is to establish an optimum action level and measure the efficacy of a Monte Carlo ISDC software for pre-treatment QA of intensity modulated radiotherapy treatments.</p><p><strong>Methods: </strong>The treatment planning system and the ISDC were commissioned by their vendors from independent base data sets, replicating a typical real-world scenario. In order to apply Receiver-Operator-Characteristics (ROC), a set of treatment plans for various case classes was created that consisted of 190 clinical treatment plans and 190 manipulated treatment plans with dose errors in the range of 1.5-2.5%. All 380 treatment plans were evaluated with ISDC in the patient geometry. ROC analysis was performed for a number of Gamma (dose-difference/distance-to-agreement) criteria. QA methods were ranked according to Area under the ROC curve (AUC) and optimum action levels were derived via Youden's J statistics.</p><p><strong>Results: </strong>Overall, for original treatment plans, the mean Gamma pass rate (GPR) for Gamma(1%, 1 mm) was close to 90%, although with some variation across case classes. The best QA criterion was Gamma(2%, 1 mm) with GPR > 90% and an AUC of 0.928. Gamma criteria with small distance-to-agreement had consistently higher AUC. GPR of original treatment plans depended on their modulation degree. An action level in terms of Gamma(1%, 1 mm) GPR that decreases with modulation degree was the most efficient criterion with sensitivity = 0.91 and specificity = 0.95, compared with Gamma(3%, 3 mm) GPR > 99%, sensitivity = 0.73 and specificity = 0.91 as a commonly used action level.</p><p><strong>Conclusions: </strong>ISDC with Monte Carlo proves highly efficient to catch errors in the treatment planning process. For a Monte Carlo based TPS, dose-difference criteria of 2% or less, and distance-to-agreement criteria of 1 mm, achieve the largest AUC in ROC analysis.</p>","PeriodicalId":101315,"journal":{"name":"Zeitschrift fur medizinische Physik","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur medizinische Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.zemedi.2023.10.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The recent availability of Monte Carlo based independent secondary dose calculation (ISDC) for patient-specific quality assurance (QA) of modulated radiotherapy requires the definition of appropriate, more sensitive action levels, since contemporary recommendations were defined for less accurate ISDC dose algorithms.
Purpose: The objective is to establish an optimum action level and measure the efficacy of a Monte Carlo ISDC software for pre-treatment QA of intensity modulated radiotherapy treatments.
Methods: The treatment planning system and the ISDC were commissioned by their vendors from independent base data sets, replicating a typical real-world scenario. In order to apply Receiver-Operator-Characteristics (ROC), a set of treatment plans for various case classes was created that consisted of 190 clinical treatment plans and 190 manipulated treatment plans with dose errors in the range of 1.5-2.5%. All 380 treatment plans were evaluated with ISDC in the patient geometry. ROC analysis was performed for a number of Gamma (dose-difference/distance-to-agreement) criteria. QA methods were ranked according to Area under the ROC curve (AUC) and optimum action levels were derived via Youden's J statistics.
Results: Overall, for original treatment plans, the mean Gamma pass rate (GPR) for Gamma(1%, 1 mm) was close to 90%, although with some variation across case classes. The best QA criterion was Gamma(2%, 1 mm) with GPR > 90% and an AUC of 0.928. Gamma criteria with small distance-to-agreement had consistently higher AUC. GPR of original treatment plans depended on their modulation degree. An action level in terms of Gamma(1%, 1 mm) GPR that decreases with modulation degree was the most efficient criterion with sensitivity = 0.91 and specificity = 0.95, compared with Gamma(3%, 3 mm) GPR > 99%, sensitivity = 0.73 and specificity = 0.91 as a commonly used action level.
Conclusions: ISDC with Monte Carlo proves highly efficient to catch errors in the treatment planning process. For a Monte Carlo based TPS, dose-difference criteria of 2% or less, and distance-to-agreement criteria of 1 mm, achieve the largest AUC in ROC analysis.