Gaussian and Lerch Models for Unimodal Time Series Forcasting.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2023-10-22 DOI:10.3390/e25101474
Azzouz Dermoune, Daoud Ounaissi, Yousri Slaoui
{"title":"Gaussian and Lerch Models for Unimodal Time Series Forcasting.","authors":"Azzouz Dermoune, Daoud Ounaissi, Yousri Slaoui","doi":"10.3390/e25101474","DOIUrl":null,"url":null,"abstract":"We consider unimodal time series forecasting. We propose Gaussian and Lerch models for this forecasting problem. The Gaussian model depends on three parameters and the Lerch model depends on four parameters. We estimate the unknown parameters by minimizing the sum of the absolute values of the residuals. We solve these minimizations with and without a weighted median and we compare both approaches. As a numerical application, we consider the daily infections of COVID-19 in China using the Gaussian and Lerch models. We derive a confident interval for the daily infections from each local minima.","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"25 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e25101474","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider unimodal time series forecasting. We propose Gaussian and Lerch models for this forecasting problem. The Gaussian model depends on three parameters and the Lerch model depends on four parameters. We estimate the unknown parameters by minimizing the sum of the absolute values of the residuals. We solve these minimizations with and without a weighted median and we compare both approaches. As a numerical application, we consider the daily infections of COVID-19 in China using the Gaussian and Lerch models. We derive a confident interval for the daily infections from each local minima.

Abstract Image

Abstract Image

Abstract Image

用于单模态时间序列预测的高斯和Lerch模型。
我们考虑单峰时间序列预测。我们为这个预测问题提出了高斯和勒奇模型。高斯模型依赖于三个参数,勒奇模型依赖于四个参数。我们通过最小化残差的绝对值之和来估计未知参数。我们在有加权中值和没有加权中值的情况下求解这些极小值,并比较这两种方法。作为一个数值应用,我们使用高斯和勒奇模型来考虑中国新冠肺炎的每日感染。我们从每个局部极小值推导出每日感染的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信