{"title":"Gaussian and Lerch Models for Unimodal Time Series Forcasting.","authors":"Azzouz Dermoune, Daoud Ounaissi, Yousri Slaoui","doi":"10.3390/e25101474","DOIUrl":null,"url":null,"abstract":"We consider unimodal time series forecasting. We propose Gaussian and Lerch models for this forecasting problem. The Gaussian model depends on three parameters and the Lerch model depends on four parameters. We estimate the unknown parameters by minimizing the sum of the absolute values of the residuals. We solve these minimizations with and without a weighted median and we compare both approaches. As a numerical application, we consider the daily infections of COVID-19 in China using the Gaussian and Lerch models. We derive a confident interval for the daily infections from each local minima.","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"25 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e25101474","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider unimodal time series forecasting. We propose Gaussian and Lerch models for this forecasting problem. The Gaussian model depends on three parameters and the Lerch model depends on four parameters. We estimate the unknown parameters by minimizing the sum of the absolute values of the residuals. We solve these minimizations with and without a weighted median and we compare both approaches. As a numerical application, we consider the daily infections of COVID-19 in China using the Gaussian and Lerch models. We derive a confident interval for the daily infections from each local minima.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.