Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2023-10-20 DOI:10.3390/e25101467
Armando Adrián Miranda-González, Alberto Jorge Rosales-Silva, Dante Mújica-Vargas, Ponciano Jorge Escamilla-Ambrosio, Francisco Javier Gallegos-Funes, Jean Marie Vianney-Kinani, Erick Velázquez-Lozada, Luis Manuel Pérez-Hernández, Lucero Verónica Lozano-Vázquez
{"title":"Denoising Vanilla Autoencoder for RGB and GS Images with Gaussian Noise.","authors":"Armando Adrián Miranda-González,&nbsp;Alberto Jorge Rosales-Silva,&nbsp;Dante Mújica-Vargas,&nbsp;Ponciano Jorge Escamilla-Ambrosio,&nbsp;Francisco Javier Gallegos-Funes,&nbsp;Jean Marie Vianney-Kinani,&nbsp;Erick Velázquez-Lozada,&nbsp;Luis Manuel Pérez-Hernández,&nbsp;Lucero Verónica Lozano-Vázquez","doi":"10.3390/e25101467","DOIUrl":null,"url":null,"abstract":"<p><p>Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represent the image captured are altered, which is translated into a loss of information. In this way, there are required procedures to recover data information closest to the real scene. This research project proposes a Denoising Vanilla Autoencoding (<i>DVA</i>) architecture by means of unsupervised neural networks for Gaussian denoising in color and grayscale images. The methodology improves other state-of-the-art architectures by means of objective numerical results. Additionally, a validation set and a high-resolution noisy image set are used, which reveal that our proposal outperforms other types of neural networks responsible for suppressing noise in images.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"25 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606544/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e25101467","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represent the image captured are altered, which is translated into a loss of information. In this way, there are required procedures to recover data information closest to the real scene. This research project proposes a Denoising Vanilla Autoencoding (DVA) architecture by means of unsupervised neural networks for Gaussian denoising in color and grayscale images. The methodology improves other state-of-the-art architectures by means of objective numerical results. Additionally, a validation set and a high-resolution noisy image set are used, which reveal that our proposal outperforms other types of neural networks responsible for suppressing noise in images.

Abstract Image

Abstract Image

Abstract Image

高斯噪声下RGB和GS图像去噪香草自动编码器。
噪声抑制算法已被用于各种任务,如计算机视觉、工业检测和视频监控等。鲁棒的图像处理系统需要提供更接近真实场景的图像;然而,有时,由于外部因素,表示所捕获图像的数据会发生更改,这会转化为信息丢失。通过这种方式,需要恢复最接近真实场景的数据信息的过程。该研究项目通过无监督神经网络提出了一种去噪香草自动编码(DVA)架构,用于彩色和灰度图像的高斯去噪。该方法通过客观的数值结果改进了其他最先进的体系结构。此外,使用了一个验证集和一个高分辨率噪声图像集,这表明我们的建议优于其他类型的负责抑制图像中噪声的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信