Space-Charge Control of Magnetism in Ferromagnetic Metals: Coupling Giant Magnitude and Robust Endurance

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhaohui Li, Hengjun Liu, Zhiqiang Zhao, Qinghua Zhang, Xingke Fu, Xiangkun Li, Fangchao Gu, Hai Zhong, Yuanyuan Pan, Guihuan Chen, Qinghao Li, Hongsen Li, Yanxue Chen, Lin Gu, Kuijuan Jin, Shishen Yan, Guo-xing Miao, Chen Ge, Qiang Li
{"title":"Space-Charge Control of Magnetism in Ferromagnetic Metals: Coupling Giant Magnitude and Robust Endurance","authors":"Zhaohui Li,&nbsp;Hengjun Liu,&nbsp;Zhiqiang Zhao,&nbsp;Qinghua Zhang,&nbsp;Xingke Fu,&nbsp;Xiangkun Li,&nbsp;Fangchao Gu,&nbsp;Hai Zhong,&nbsp;Yuanyuan Pan,&nbsp;Guihuan Chen,&nbsp;Qinghao Li,&nbsp;Hongsen Li,&nbsp;Yanxue Chen,&nbsp;Lin Gu,&nbsp;Kuijuan Jin,&nbsp;Shishen Yan,&nbsp;Guo-xing Miao,&nbsp;Chen Ge,&nbsp;Qiang Li","doi":"10.1002/adma.202207353","DOIUrl":null,"url":null,"abstract":"<p>Ferromagnetic metals show great prospects in ultralow-power-consumption spintronic devices, due to their high Curie temperature and robust magnetization. However, there is still a lack of reliable solutions for giant and reversible voltage control of magnetism in ferromagnetic metal films. Here, a novel space-charge approach is proposed which allows for achieving a modulation of 30.3 emu/g under 1.3 V in Co/TiO<sub>2</sub> multilayer granular films. The robust endurance with more than 5000 cycles is demonstrated. Similar phenomena exist in Ni/TiO<sub>2</sub> and Fe/TiO<sub>2</sub> multilayer granular films, which shows its universality. The magnetic change of 107% in Ni/TiO<sub>2</sub> underlines its potential in a voltage-driven ON–OFF magnetism. Such giant and reversible voltage control of magnetism can be ascribed to space-charge effect at the ferromagnetic metals/TiO<sub>2</sub> interfaces, in which spin-polarized electrons are injected into the ferromagnetic metal layer with the adsorption of lithium-ions on the TiO<sub>2</sub> surface. These results open the door for a promising method to modulate the magnetization in ferromagnetic metals, paving the way toward the development of ionic-magnetic-electric coupled applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"35 8","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202207353","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Ferromagnetic metals show great prospects in ultralow-power-consumption spintronic devices, due to their high Curie temperature and robust magnetization. However, there is still a lack of reliable solutions for giant and reversible voltage control of magnetism in ferromagnetic metal films. Here, a novel space-charge approach is proposed which allows for achieving a modulation of 30.3 emu/g under 1.3 V in Co/TiO2 multilayer granular films. The robust endurance with more than 5000 cycles is demonstrated. Similar phenomena exist in Ni/TiO2 and Fe/TiO2 multilayer granular films, which shows its universality. The magnetic change of 107% in Ni/TiO2 underlines its potential in a voltage-driven ON–OFF magnetism. Such giant and reversible voltage control of magnetism can be ascribed to space-charge effect at the ferromagnetic metals/TiO2 interfaces, in which spin-polarized electrons are injected into the ferromagnetic metal layer with the adsorption of lithium-ions on the TiO2 surface. These results open the door for a promising method to modulate the magnetization in ferromagnetic metals, paving the way toward the development of ionic-magnetic-electric coupled applications.

铁磁性金属的空间电荷控制:巨量级与鲁棒耐久性的耦合
铁磁金属具有居里温度高、磁化强度强等特点,在超低功耗自旋电子器件中具有广阔的应用前景。然而,对于铁磁性金属薄膜中磁性的巨大可逆电压控制,目前还缺乏可靠的解决方案。本文提出了一种新的空间电荷方法,可以在Co/TiO2多层颗粒膜中在1.3 V下实现30.3 emu/g的调制。具有超过5000次循环的耐用性。在Ni/TiO2和Fe/TiO2多层颗粒膜中也存在类似的现象,显示出其普遍性。Ni/TiO2中107%的磁性变化强调了其在电压驱动的ON-OFF磁性中的潜力。这种巨大且可逆的磁性电压控制可以归因于铁磁金属/TiO2界面上的空间电荷效应,其中自旋极化电子被注入铁磁金属层,锂离子在TiO2表面吸附。这些结果为一种有前途的方法来调制铁磁性金属的磁化打开了大门,为离子-磁电耦合应用的发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信