Addressing Particle Compositional Heterogeneities in Super-Resolution-Enhanced Live-Cell Ratiometric pH Sensing with Ultrasmall Fluorescent Core–Shell Aluminosilicate Nanoparticles

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rachel Lee, Jacob A. Erstling, Joshua A. Hinckley, Dana V. Chapman, Ulrich B. Wiesner
{"title":"Addressing Particle Compositional Heterogeneities in Super-Resolution-Enhanced Live-Cell Ratiometric pH Sensing with Ultrasmall Fluorescent Core–Shell Aluminosilicate Nanoparticles","authors":"Rachel Lee,&nbsp;Jacob A. Erstling,&nbsp;Joshua A. Hinckley,&nbsp;Dana V. Chapman,&nbsp;Ulrich B. Wiesner","doi":"10.1002/adfm.202106144","DOIUrl":null,"url":null,"abstract":"<p>The interrogation of metabolic parameters like pH in live-cell experiments using optical super-resolution microscopy (SRM) remains challenging. This is due to a paucity of appropriate metabolic probes enabling live-cell SRM-based sensing. Here, ultrasmall fluorescent core–shell aluminosilicate nanoparticle sensors (FAM–ATTO647N aC′ dots) that covalently encapsulate a reference dye (ATTO647N) in the core and a pH-sensing moiety (FAM) in the shell are introduced. Only the reference dye exhibits optical blinking enabling live-cell stochastic optical reconstruction microscopy (STORM). Using data from cells incubated for 60 min with FAM–ATTO647N aC′ dots, pixelated information from total internal reflection fluorescence (TIRF) microscopy-based ratiometric sensing can be combined with that from STORM-based localizations via the blinking reference dye in order to enhance the resolution of ratiometric pH sensor maps beyond the optical diffraction limit. A nearest-neighbor interpolation methodology is developed to quantitatively address particle compositional heterogeneity as determined by separate single-particle fluorescence imaging methods. When combined with STORM-based estimates of the number of particles per vesicle, vesicle size, and vesicular motion as a whole, this analysis provides detailed live-cell spatial and functional information, paving the way to a comprehensive mapping and understanding of the spatiotemporal evolution of nanoparticle processing by cells important, e.g., for applications in nanomedicine.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"31 45","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2021-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202106144","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202106144","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

The interrogation of metabolic parameters like pH in live-cell experiments using optical super-resolution microscopy (SRM) remains challenging. This is due to a paucity of appropriate metabolic probes enabling live-cell SRM-based sensing. Here, ultrasmall fluorescent core–shell aluminosilicate nanoparticle sensors (FAM–ATTO647N aC′ dots) that covalently encapsulate a reference dye (ATTO647N) in the core and a pH-sensing moiety (FAM) in the shell are introduced. Only the reference dye exhibits optical blinking enabling live-cell stochastic optical reconstruction microscopy (STORM). Using data from cells incubated for 60 min with FAM–ATTO647N aC′ dots, pixelated information from total internal reflection fluorescence (TIRF) microscopy-based ratiometric sensing can be combined with that from STORM-based localizations via the blinking reference dye in order to enhance the resolution of ratiometric pH sensor maps beyond the optical diffraction limit. A nearest-neighbor interpolation methodology is developed to quantitatively address particle compositional heterogeneity as determined by separate single-particle fluorescence imaging methods. When combined with STORM-based estimates of the number of particles per vesicle, vesicle size, and vesicular motion as a whole, this analysis provides detailed live-cell spatial and functional information, paving the way to a comprehensive mapping and understanding of the spatiotemporal evolution of nanoparticle processing by cells important, e.g., for applications in nanomedicine.

在超分辨率增强的活细胞比例pH传感中使用超小荧光核壳硅酸铝纳米颗粒处理颗粒组成的异质性
利用光学超分辨率显微镜(SRM)在活细胞实验中对代谢参数(如pH)的研究仍然具有挑战性。这是由于缺乏适当的代谢探针,使活细胞srm为基础的传感。本文介绍了一种超小荧光核壳铝硅酸盐纳米颗粒传感器(FAM - ATTO647N aC ' dots),该传感器在核心中共价封装了参考染料(ATTO647N),在外壳中封装了ph感应片段(FAM)。只有参考染料显示光学闪烁使活细胞随机光学重建显微镜(STORM)。利用FAM-ATTO647N aC '点孵育60分钟的细胞数据,可以将基于全内反射荧光(TIRF)显微镜的比例传感的像素化信息与基于storm的通过闪烁参考染料的定位信息相结合,以提高超过光学衍射极限的比例pH传感器图的分辨率。最近邻居插值方法的发展,定量地解决颗粒组成的异质性,由单独的单粒子荧光成像方法确定。当结合基于storm的对每个囊泡颗粒数量、囊泡大小和囊泡运动的整体估计时,该分析提供了详细的活细胞空间和功能信息,为全面绘制和理解细胞处理纳米颗粒的时空演变铺平了道路,例如纳米医学的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信