Topographic Manipulation of Graphene Oxide by Polyaniline Nanocone Arrays Enables High-Performance Solar-Driven Water Evaporation

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin Zhao, Xiangtong Meng, Hongqi Zou, Zhenhao Wang, Yadong Du, Yuan Shao, Jun Qi, Jieshan Qiu
{"title":"Topographic Manipulation of Graphene Oxide by Polyaniline Nanocone Arrays Enables High-Performance Solar-Driven Water Evaporation","authors":"Xin Zhao,&nbsp;Xiangtong Meng,&nbsp;Hongqi Zou,&nbsp;Zhenhao Wang,&nbsp;Yadong Du,&nbsp;Yuan Shao,&nbsp;Jun Qi,&nbsp;Jieshan Qiu","doi":"10.1002/adfm.202209207","DOIUrl":null,"url":null,"abstract":"<p>Tuning the surface topography of solar evaporators is of significance for boosting light absorption and enhancing solar-to-vapor efficiency. Herein, a novel strategy to manipulate the surface topography of graphene oxide (GO) via electrostatic assembly coupled with in situ polymerizations of aniline is reported. The GO surface is fully hybridized with the polyaniline (PANI) nanocone arrays, manifesting periodic structures with highly foldable configurations. Additionally, the PANI arrays tune the surface chemistry of GO and retard the redispersion of GO into water, thus enabling corresponding composite (PG) robust structural durability. Featuring these intriguing attributes, when applied as an evaporator in pure water, the PG delivers an improved evaporation performance of 1.42 kg m<sup>−2</sup> h<sup>−1</sup> and a high evaporation efficiency of 96.6% under one sun illumination. Further investigations reveal that the periodically conical structures of PANI over GO surface strengthen light absorption via multiple reflections and facilitate heat localization. Desalination test substantiates the reliability of PG for practical freshwater production. The numerical simulations and optical microscopy observation exhibit the surface topography-strengthened vapor generation effect. This study sheds new light on the rational manipulation of surface topography of photothermal materials for high-efficiency solar evaporation.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 7","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202209207","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

Abstract

Tuning the surface topography of solar evaporators is of significance for boosting light absorption and enhancing solar-to-vapor efficiency. Herein, a novel strategy to manipulate the surface topography of graphene oxide (GO) via electrostatic assembly coupled with in situ polymerizations of aniline is reported. The GO surface is fully hybridized with the polyaniline (PANI) nanocone arrays, manifesting periodic structures with highly foldable configurations. Additionally, the PANI arrays tune the surface chemistry of GO and retard the redispersion of GO into water, thus enabling corresponding composite (PG) robust structural durability. Featuring these intriguing attributes, when applied as an evaporator in pure water, the PG delivers an improved evaporation performance of 1.42 kg m−2 h−1 and a high evaporation efficiency of 96.6% under one sun illumination. Further investigations reveal that the periodically conical structures of PANI over GO surface strengthen light absorption via multiple reflections and facilitate heat localization. Desalination test substantiates the reliability of PG for practical freshwater production. The numerical simulations and optical microscopy observation exhibit the surface topography-strengthened vapor generation effect. This study sheds new light on the rational manipulation of surface topography of photothermal materials for high-efficiency solar evaporation.

Abstract Image

聚苯胺纳米锥阵列对氧化石墨烯的地形操纵使高性能太阳能驱动的水蒸发成为可能
调整太阳能蒸发器的表面形貌对提高光吸收和提高太阳能-蒸汽效率具有重要意义。本文报道了一种通过静电组装和苯胺原位聚合来操纵氧化石墨烯(GO)表面形貌的新策略。氧化石墨烯表面与聚苯胺(PANI)纳米锥阵列完全杂化,表现出具有高度可折叠构型的周期性结构。此外,聚苯胺阵列调整了氧化石墨烯的表面化学性质,延缓了氧化石墨烯在水中的再分散,从而使相应的复合材料(PG)具有强大的结构耐久性。具有这些有趣的属性,当作为蒸发器在纯水中应用时,PG提供了1.42 kg m−2 h−1的改进蒸发性能和一个太阳光照下的96.6%的高蒸发效率。进一步的研究表明,聚苯胺在氧化石墨烯表面的周期性锥形结构通过多次反射增强光吸收,有利于热局部化。海水淡化试验证实了PG在实际淡水生产中的可靠性。数值模拟和光学显微镜观察显示了表面形貌增强的蒸汽生成效应。该研究为合理操纵光热材料表面形貌以实现高效太阳能蒸发提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信