Low- and High-Moisture Extrusion of Pulse Proteins as Plant-Based Meat Ingredients: A Review
Q3 Agricultural and Biological Sciences
S. Vatansever, M. Tulbek, M. Riaz
求助PDF
{"title":"Low- and High-Moisture Extrusion of Pulse Proteins as Plant-Based Meat Ingredients: A Review","authors":"S. Vatansever, M. Tulbek, M. Riaz","doi":"10.1094/cfw-65-4-0038","DOIUrl":null,"url":null,"abstract":"Plant-based meat alternatives have become a major staple in the North American marketplace due to changing consumer demands. The main drivers of this market segment are changing dietary patterns, increasing numbers of consumers pursuing vegetarian and flexitarian lifestyles, rising individual income in developing countries, and an increase in global awareness of environmental concerns. Pulse crops and pulse proteins present an outstanding nutritional value chain, along with superior techno-functionality that can meet the requirements of plant proteins for producing meat analogue ingredients. In addition, pulse crops can assist in reducing carbon footprint by fixing nitrogen during agricultural production rotations. Pulse proteins also offer alternative solutions for addressing gluten-free, low-allergen, and GMO-free meat alternatives in the global marketplace. Alternative pulse-based solutions with similar sensory and texture attributes may be used to substitute for meat ingredients in new product applications. Global awareness of healthy lifestyles, increased protein intake, and rising income in developing countries have shifted eating habits toward following a well-balanced diet that consists of a complete combination of proteins, carbohydrates, lipids, and micronutrients (1). As the world population has been predicted to reach 9.5 billion by 2050, the demand for animal proteins would significantly increase due to changing consumption patterns in Asian and Southeast Asian countries (2). However, increased demand for animal-based products and their higher consumption levels may have negative impacts on the nutritional health of consumers and the environmental health of the planet (2–4). Particularly, increased use of animal-based proteins may increase carbon footprint, water consumption, and contribute to increased greenhouse gas formation. Alternative vegetable-based proteins can be considered to reduce these negative impacts and help food manufacturers develop sustainable solutions (3). Meat production has significantly increased in the United States, with 87,409 million pounds produced by November 2019 (8). The global demand for animal-based proteins has been rising as well and is expected to reach twice its current level by 2050 (2). However, the animal protein production industry may negatively affect a sustainable environment and human health. Additionally, the dietary restrictions of various cultures and high cost of animal-based proteins may limit the consumption of animal-based products (5). Thus, a new generation of North American consumers has recently started following a more sustainable and eco-friendly plant-based protein consumption pattern that 1) consumes low-cholesterol, low-fat, high-protein, and high-dietary fiber foods; 2) contributes to a sustainable food supply; 3) contributes to a reduction in pollution and ecological footprint; and 4) assists in the reduction of water consumption in the food production chain (1,2,5–7). Scientists have been conducting research on alternative protein resources that can provide bio-functionality for enhanced nutritional profile and improved techno-functionality attributes (e.g., protein solubility, gelation, water-binding capacity) compared with animal-based proteins to provide sustainable and low-carbon footprint food solutions for this growing market segment (3,7,9). Over the last two decades, pulse crops such as beans, peas, lentils, and chickpeas have received significant interest due to their sustainability benefits, high nutritional values, and technofunctionalities for producing plant-based proteins (10–13). Pulse crops play a vital role in terms of their environmental and economic contributions by decreasing the use of synthetic fertilizers by fixing nitrogen and, thus, reducing greenhouse gas emissions (14). In addition, pulse crops can provide solutions for the gluten-free industry as vegetable-based ingredients (e.g., flour, protein, starch, and fiber) that can present economic, sustainable, and nutritional benefits compared with animal-based proteins (10,12–14). In this article, we discuss the nutritional attributes and technological capabilities of pulse proteins by focusing on pea, lentil, and faba bean proteins as new alternatives for plant-based meat analogue applications. Role of Pulse Proteins in Plant-Based Foods Plant-based proteins can be produced from plant resources using dry and wet separation technologies (4,9,15). Plant-based proteins are utilized in the food industry for their techno-functionalities (e.g., solubility, gelation). In comparison to other plant-based proteins, soybean and pulse proteins are primarily used to replace and blend with animal muscle proteins for meat formulations (1,16). Soybean ingredients have a significant presence in the plant based-protein industry (3) due to their notable nutritional properties, bioavailability, and techno-functionalities, which enhance the textural characteristics of end products (1,17). Soybean ingredients (e.g., soy grits, soy protein concentrates, and soy protein isolates) have been studied extensively to address the needs of the plant-based foods industry (1,17,18). However, during the last two decades, consumers have shown significant interest in pulse proteins, including pea (Pisum sativum), lentil Lowand High-Moisture Extrusion of Pulse Proteins as Plant-Based Meat Ingredients: A Review Serap Vatansever,1 Mehmet C. Tulbek,2 and Mian N. Riaz3,4 1 Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo, ND 581086050, U.S.A. 2 AGT Foods R&D Centre, Saskatoon, SK S7T 0G3, Canada. 3 Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, U.S.A. 4 Corresponding author. Dr. Mian Nadeem Riaz, Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, U.S.A. E-mail: mnriaz@tamu.edu https://doi.org/10.1094/CFW-65-4-0038 © 2020 Cereals & Grains Association CEREAL FOODS WORLD, JULY-AUGUST 2020, VOL. 65, NO. 4 / DOI: https://doi.org/10.1094/CFW-65-4-0038 (Lens culinaris), and faba bean (Vicia faba). Pulse proteins can provide an alternative to soybean proteins as they are low in allergens, are non-GMO protein sources, and have similar amino acid attributes and digestibility scores compared with soybean proteins (1,3,7,9,11,14,17,19). Furthermore, promising techno-functionality attributes (e.g., solubility, gelling, waterbinding, and texturizing properties) of pulse proteins can provide additional benefits in food formulation systems (1,3,5,9,10,20). Structural Composition and Physicochemical Properties of Pea, Lentil, and Faba Bean Proteins Pulses are versatile crops due to their notable compositions, which consist of high protein contents, complex carbohydrates (starch, nonstarch oligosaccharides, and dietary fiber), minerals, vitamins, and phytochemicals (9,10,13,21,22). The high protein contents of peas (14–31%), lentils (21–31%), and faba beans (19–39%) are regarded as important plant-protein sources and a good fit for value-added ingredients that meet human protein intake needs (10,11,14,23,24). Pulse proteins (Table I) are composed of major storage proteins, including globulins (soluble in salt solutions) and albumins (soluble in water) and minor proteins such as prolamins (soluble in alcohol) and glutelins (soluble at dilute acid or base solution) (10,11,12,14,23,24). Pulse globulins are the primary storage proteins of pulse proteins, accounting for 70–80% of the seed proteins, and act as nutrient reservoirs during seed germinations for plant growth. Pulse globulins dissociate at different pH values with the effect of ionic strength (11,12). Based on the sedimentation coefficients of pulse globulins, globulins are classified into two main fractions: legumin (11S) and vicilin (7S). Legumin and vicilin comprise primary globular proteins in pea, lentil, and faba bean, with a legumin/vicilin ratio of 1–3:1 (11,12,21,24-27), 10.5:1 (14,26), and 2:1, respectively (23,24), and with the ratio a function of amino acid profile, surface charges, size, and extrinsic factors (e.g., processing, cultivar, and growing environment). Structural differences between globular proteins are important for the techno-functionality of pulse proteins, such as the higher gelation ability of pea vicilin compared with pea legumin (11,21, 25). In addition, pea globulins contain a minor fraction, convicilin (7S-8S) (11). Legumin (11S) is a hexamer of 300–410 kDa with six subunits (~60–65 kDa) consisting of acidic, a-chain (~40 kDa), and basic, b-chain (~20 kDa), polypeptides that are covalently linked via disulfide bridges (2,21,25) due to the presence of cysteine residues (21,28). The hydrophilic a-chains are located in the outside of the molecule, while hydrophobic b-chains are located in the interior of the molecule (11). Vicilin (7S) is a trimer of 145–190 kDa consisting of 50–70 kDa subunits. Pea vicilin contains a trimer of 150 kDa (3,11,25), while faba bean vicilin has a trimer of 158–163 kDa (12,23). Pea convicilin (7S-8S) is also a trimeric protein of 180–210 kDa, including a ~70–71 kDa subunit (3,11,25). The linkage of subunits (a, b, and g) of vicilin occurs through noncovalent hydrophobic bonding linkages due to the absence of sulfur-containing amino acids (SCAAs), such as methionine and cysteine (12,21,25). Vicilin contains more heterogeneous polypeptides through the cleavage of major subunits into lower molecular weight fragments (10, 11, 17–20, 25–30, and 30–36 kDa) than legumin (3,12,25). In addition, its carbohydrate residues, through glycosylation of the g-subunit, allow more hydrophilic surface than legumin (11,21); this carbohydrate residue was also found in lentil legumins (26). Furthermore, vicilin is a more flexible globular protein than legumin due to its higher heterogeneity polypeptide content and results in better interfacial activity, which may assist with better gel formation (2). Convic","PeriodicalId":50707,"journal":{"name":"Cereal Foods World","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cereal Foods World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1094/cfw-65-4-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 44
引用
批量引用
Abstract
Plant-based meat alternatives have become a major staple in the North American marketplace due to changing consumer demands. The main drivers of this market segment are changing dietary patterns, increasing numbers of consumers pursuing vegetarian and flexitarian lifestyles, rising individual income in developing countries, and an increase in global awareness of environmental concerns. Pulse crops and pulse proteins present an outstanding nutritional value chain, along with superior techno-functionality that can meet the requirements of plant proteins for producing meat analogue ingredients. In addition, pulse crops can assist in reducing carbon footprint by fixing nitrogen during agricultural production rotations. Pulse proteins also offer alternative solutions for addressing gluten-free, low-allergen, and GMO-free meat alternatives in the global marketplace. Alternative pulse-based solutions with similar sensory and texture attributes may be used to substitute for meat ingredients in new product applications. Global awareness of healthy lifestyles, increased protein intake, and rising income in developing countries have shifted eating habits toward following a well-balanced diet that consists of a complete combination of proteins, carbohydrates, lipids, and micronutrients (1). As the world population has been predicted to reach 9.5 billion by 2050, the demand for animal proteins would significantly increase due to changing consumption patterns in Asian and Southeast Asian countries (2). However, increased demand for animal-based products and their higher consumption levels may have negative impacts on the nutritional health of consumers and the environmental health of the planet (2–4). Particularly, increased use of animal-based proteins may increase carbon footprint, water consumption, and contribute to increased greenhouse gas formation. Alternative vegetable-based proteins can be considered to reduce these negative impacts and help food manufacturers develop sustainable solutions (3). Meat production has significantly increased in the United States, with 87,409 million pounds produced by November 2019 (8). The global demand for animal-based proteins has been rising as well and is expected to reach twice its current level by 2050 (2). However, the animal protein production industry may negatively affect a sustainable environment and human health. Additionally, the dietary restrictions of various cultures and high cost of animal-based proteins may limit the consumption of animal-based products (5). Thus, a new generation of North American consumers has recently started following a more sustainable and eco-friendly plant-based protein consumption pattern that 1) consumes low-cholesterol, low-fat, high-protein, and high-dietary fiber foods; 2) contributes to a sustainable food supply; 3) contributes to a reduction in pollution and ecological footprint; and 4) assists in the reduction of water consumption in the food production chain (1,2,5–7). Scientists have been conducting research on alternative protein resources that can provide bio-functionality for enhanced nutritional profile and improved techno-functionality attributes (e.g., protein solubility, gelation, water-binding capacity) compared with animal-based proteins to provide sustainable and low-carbon footprint food solutions for this growing market segment (3,7,9). Over the last two decades, pulse crops such as beans, peas, lentils, and chickpeas have received significant interest due to their sustainability benefits, high nutritional values, and technofunctionalities for producing plant-based proteins (10–13). Pulse crops play a vital role in terms of their environmental and economic contributions by decreasing the use of synthetic fertilizers by fixing nitrogen and, thus, reducing greenhouse gas emissions (14). In addition, pulse crops can provide solutions for the gluten-free industry as vegetable-based ingredients (e.g., flour, protein, starch, and fiber) that can present economic, sustainable, and nutritional benefits compared with animal-based proteins (10,12–14). In this article, we discuss the nutritional attributes and technological capabilities of pulse proteins by focusing on pea, lentil, and faba bean proteins as new alternatives for plant-based meat analogue applications. Role of Pulse Proteins in Plant-Based Foods Plant-based proteins can be produced from plant resources using dry and wet separation technologies (4,9,15). Plant-based proteins are utilized in the food industry for their techno-functionalities (e.g., solubility, gelation). In comparison to other plant-based proteins, soybean and pulse proteins are primarily used to replace and blend with animal muscle proteins for meat formulations (1,16). Soybean ingredients have a significant presence in the plant based-protein industry (3) due to their notable nutritional properties, bioavailability, and techno-functionalities, which enhance the textural characteristics of end products (1,17). Soybean ingredients (e.g., soy grits, soy protein concentrates, and soy protein isolates) have been studied extensively to address the needs of the plant-based foods industry (1,17,18). However, during the last two decades, consumers have shown significant interest in pulse proteins, including pea (Pisum sativum), lentil Lowand High-Moisture Extrusion of Pulse Proteins as Plant-Based Meat Ingredients: A Review Serap Vatansever,1 Mehmet C. Tulbek,2 and Mian N. Riaz3,4 1 Department of Plant Sciences, North Dakota State University, P.O. Box 6050, Fargo, ND 581086050, U.S.A. 2 AGT Foods R&D Centre, Saskatoon, SK S7T 0G3, Canada. 3 Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, U.S.A. 4 Corresponding author. Dr. Mian Nadeem Riaz, Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, U.S.A. E-mail: mnriaz@tamu.edu https://doi.org/10.1094/CFW-65-4-0038 © 2020 Cereals & Grains Association CEREAL FOODS WORLD, JULY-AUGUST 2020, VOL. 65, NO. 4 / DOI: https://doi.org/10.1094/CFW-65-4-0038 (Lens culinaris), and faba bean (Vicia faba). Pulse proteins can provide an alternative to soybean proteins as they are low in allergens, are non-GMO protein sources, and have similar amino acid attributes and digestibility scores compared with soybean proteins (1,3,7,9,11,14,17,19). Furthermore, promising techno-functionality attributes (e.g., solubility, gelling, waterbinding, and texturizing properties) of pulse proteins can provide additional benefits in food formulation systems (1,3,5,9,10,20). Structural Composition and Physicochemical Properties of Pea, Lentil, and Faba Bean Proteins Pulses are versatile crops due to their notable compositions, which consist of high protein contents, complex carbohydrates (starch, nonstarch oligosaccharides, and dietary fiber), minerals, vitamins, and phytochemicals (9,10,13,21,22). The high protein contents of peas (14–31%), lentils (21–31%), and faba beans (19–39%) are regarded as important plant-protein sources and a good fit for value-added ingredients that meet human protein intake needs (10,11,14,23,24). Pulse proteins (Table I) are composed of major storage proteins, including globulins (soluble in salt solutions) and albumins (soluble in water) and minor proteins such as prolamins (soluble in alcohol) and glutelins (soluble at dilute acid or base solution) (10,11,12,14,23,24). Pulse globulins are the primary storage proteins of pulse proteins, accounting for 70–80% of the seed proteins, and act as nutrient reservoirs during seed germinations for plant growth. Pulse globulins dissociate at different pH values with the effect of ionic strength (11,12). Based on the sedimentation coefficients of pulse globulins, globulins are classified into two main fractions: legumin (11S) and vicilin (7S). Legumin and vicilin comprise primary globular proteins in pea, lentil, and faba bean, with a legumin/vicilin ratio of 1–3:1 (11,12,21,24-27), 10.5:1 (14,26), and 2:1, respectively (23,24), and with the ratio a function of amino acid profile, surface charges, size, and extrinsic factors (e.g., processing, cultivar, and growing environment). Structural differences between globular proteins are important for the techno-functionality of pulse proteins, such as the higher gelation ability of pea vicilin compared with pea legumin (11,21, 25). In addition, pea globulins contain a minor fraction, convicilin (7S-8S) (11). Legumin (11S) is a hexamer of 300–410 kDa with six subunits (~60–65 kDa) consisting of acidic, a-chain (~40 kDa), and basic, b-chain (~20 kDa), polypeptides that are covalently linked via disulfide bridges (2,21,25) due to the presence of cysteine residues (21,28). The hydrophilic a-chains are located in the outside of the molecule, while hydrophobic b-chains are located in the interior of the molecule (11). Vicilin (7S) is a trimer of 145–190 kDa consisting of 50–70 kDa subunits. Pea vicilin contains a trimer of 150 kDa (3,11,25), while faba bean vicilin has a trimer of 158–163 kDa (12,23). Pea convicilin (7S-8S) is also a trimeric protein of 180–210 kDa, including a ~70–71 kDa subunit (3,11,25). The linkage of subunits (a, b, and g) of vicilin occurs through noncovalent hydrophobic bonding linkages due to the absence of sulfur-containing amino acids (SCAAs), such as methionine and cysteine (12,21,25). Vicilin contains more heterogeneous polypeptides through the cleavage of major subunits into lower molecular weight fragments (10, 11, 17–20, 25–30, and 30–36 kDa) than legumin (3,12,25). In addition, its carbohydrate residues, through glycosylation of the g-subunit, allow more hydrophilic surface than legumin (11,21); this carbohydrate residue was also found in lentil legumins (26). Furthermore, vicilin is a more flexible globular protein than legumin due to its higher heterogeneity polypeptide content and results in better interfacial activity, which may assist with better gel formation (2). Convic
低水分和高水分挤压脉冲蛋白作为植物性肉类原料:综述
由于消费者需求的变化,植物性肉类替代品已成为北美市场的主要产品。这一细分市场的主要驱动力是饮食模式的改变,越来越多的消费者追求素食和灵活的生活方式,发展中国家个人收入的增加,以及全球对环境问题意识的提高。脉冲作物和脉冲蛋白提供了一个杰出的营养价值链,以及卓越的技术功能,可以满足植物蛋白生产肉类类似成分的要求。此外,脉冲作物可以通过在农业生产轮作期间固定氮来帮助减少碳足迹。脉冲蛋白还为全球市场上的无麸质、低过敏原和无转基因肉类替代品提供了替代解决方案。具有类似感官和质地属性的替代脉冲解决方案可用于替代新产品应用中的肉类成分。全球对健康生活方式的认识,蛋白质摄入量的增加,以及发展中国家收入的增加,使饮食习惯转向了均衡的饮食,包括蛋白质、碳水化合物、脂质和微量营养素的完全组合(1)。预计到2050年,世界人口将达到95亿,由于亚洲和东南亚国家消费模式的变化,对动物蛋白的需求将显著增加(2)。对动物性产品需求的增加及其消费水平的提高可能对消费者的营养健康和地球的环境健康产生负面影响(2-4)。特别是,增加动物蛋白的使用可能会增加碳足迹、水消耗,并导致温室气体的增加。可以考虑替代植物蛋白来减少这些负面影响,并帮助食品制造商开发可持续的解决方案(3)。美国的肉类产量大幅增加,到2019年11月产量达到874.09亿磅(8)。全球对动物蛋白的需求也在上升,预计到2050年将达到目前水平的两倍(2)。动物蛋白生产行业可能对可持续环境和人类健康产生负面影响。此外,不同文化的饮食限制和动物性蛋白质的高成本可能会限制动物性产品的消费(5)。因此,新一代北美消费者最近开始遵循一种更可持续和环保的植物性蛋白质消费模式:1)消费低胆固醇、低脂肪、高蛋白和高膳食纤维的食物;2)有助于可持续的粮食供应;3)有助于减少污染和生态足迹;4)有助于减少食品生产链中的水消耗(1,2,5 - 7)。科学家们一直在研究替代蛋白质资源,与动物性蛋白质相比,这些蛋白质资源可以提供生物功能,增强营养成分,改善技术功能属性(例如,蛋白质溶解度、凝胶性、水结合能力),为这一不断增长的细分市场提供可持续和低碳足迹的食品解决方案(3,7,9)。在过去的二十年中,豆类、豌豆、扁豆和鹰嘴豆等豆类作物因其可持续性效益、高营养价值和生产植物性蛋白质的技术功能而受到极大的关注(10-13)。脉冲作物通过固定氮减少合成肥料的使用,从而减少温室气体排放,在环境和经济贡献方面发挥着至关重要的作用(14)。此外,豆类作物可以为无麸质行业提供解决方案,作为基于蔬菜的成分(例如,面粉,蛋白质,淀粉和纤维),与基于动物的蛋白质相比,可以提供经济,可持续和营养效益(10,12 - 14)。在本文中,我们讨论了豆类蛋白的营养属性和技术能力,重点是豌豆,扁豆和蚕豆蛋白作为植物性肉类类似物应用的新替代品。脉冲蛋白在植物性食品中的作用植物性蛋白可以通过干湿分离技术从植物资源中生产出来(4,9,15)。植物蛋白因其技术功能(如溶解度、凝胶性)而被用于食品工业。与其他植物蛋白相比,大豆蛋白和豆类蛋白主要用于替代肉类配方中的动物肌肉蛋白并与之混合(1,16)。 由于消费者需求的变化,植物性肉类替代品已成为北美市场的主要产品。这一细分市场的主要驱动力是饮食模式的改变,越来越多的消费者追求素食和灵活的生活方式,发展中国家个人收入的增加,以及全球对环境问题意识的提高。脉冲作物和脉冲蛋白提供了一个杰出的营养价值链,以及卓越的技术功能,可以满足植物蛋白生产肉类类似成分的要求。此外,脉冲作物可以通过在农业生产轮作期间固定氮来帮助减少碳足迹。脉冲蛋白还为全球市场上的无麸质、低过敏原和无转基因肉类替代品提供了替代解决方案。具有类似感官和质地属性的替代脉冲解决方案可用于替代新产品应用中的肉类成分。全球对健康生活方式的认识,蛋白质摄入量的增加,以及发展中国家收入的增加,使饮食习惯转向了均衡的饮食,包括蛋白质、碳水化合物、脂质和微量营养素的完全组合(1)。预计到2050年,世界人口将达到95亿,由于亚洲和东南亚国家消费模式的变化,对动物蛋白的需求将显著增加(2)。对动物性产品需求的增加及其消费水平的提高可能对消费者的营养健康和地球的环境健康产生负面影响(2-4)。特别是,增加动物蛋白的使用可能会增加碳足迹、水消耗,并导致温室气体的增加。可以考虑替代植物蛋白来减少这些负面影响,并帮助食品制造商开发可持续的解决方案(3)。美国的肉类产量大幅增加,到2019年11月产量达到874.09亿磅(8)。全球对动物蛋白的需求也在上升,预计到2050年将达到目前水平的两倍(2)。动物蛋白生产行业可能对可持续环境和人类健康产生负面影响。此外,不同文化的饮食限制和动物性蛋白质的高成本可能会限制动物性产品的消费(5)。因此,新一代北美消费者最近开始遵循一种更可持续和环保的植物性蛋白质消费模式:1)消费低胆固醇、低脂肪、高蛋白和高膳食纤维的食物;2)有助于可持续的粮食供应;3)有助于减少污染和生态足迹;4)有助于减少食品生产链中的水消耗(1,2,5 - 7)。科学家们一直在研究替代蛋白质资源,与动物性蛋白质相比,这些蛋白质资源可以提供生物功能,增强营养成分,改善技术功能属性(例如,蛋白质溶解度、凝胶性、水结合能力),为这一不断增长的细分市场提供可持续和低碳足迹的食品解决方案(3,7,9)。在过去的二十年中,豆类、豌豆、扁豆和鹰嘴豆等豆类作物因其可持续性效益、高营养价值和生产植物性蛋白质的技术功能而受到极大的关注(10-13)。脉冲作物通过固定氮减少合成肥料的使用,从而减少温室气体排放,在环境和经济贡献方面发挥着至关重要的作用(14)。此外,豆类作物可以为无麸质行业提供解决方案,作为基于蔬菜的成分(例如,面粉,蛋白质,淀粉和纤维),与基于动物的蛋白质相比,可以提供经济,可持续和营养效益(10,12 - 14)。在本文中,我们讨论了豆类蛋白的营养属性和技术能力,重点是豌豆,扁豆和蚕豆蛋白作为植物性肉类类似物应用的新替代品。脉冲蛋白在植物性食品中的作用植物性蛋白可以通过干湿分离技术从植物资源中生产出来(4,9,15)。植物蛋白因其技术功能(如溶解度、凝胶性)而被用于食品工业。与其他植物蛋白相比,大豆蛋白和豆类蛋白主要用于替代肉类配方中的动物肌肉蛋白并与之混合(1,16)。 大豆成分因其显著的营养特性、生物利用度和技术功能而在植物蛋白工业中占有重要地位(3),从而增强了最终产品的质地特征(1,17)。为了满足植物性食品行业的需求,大豆成分(如大豆粗粒、大豆浓缩蛋白和大豆分离蛋白)已经得到了广泛的研究(1,17,18)。然而,在过去的二十年中,消费者对脉冲蛋白表现出了极大的兴趣,包括豌豆(Pisum sativum),扁豆低水分和高水分挤压脉冲蛋白作为植物性肉类成分:Serap Vatansever,1 Mehmet C. Tulbek,2 Mian N. Riaz3,4 1北达科他州立大学植物科学系,美国法戈581086050邮政信箱6050,2 AGT食品研发中心,加拿大萨斯卡顿,SK s7t0g3。3德克萨斯农工大学食品科学与技术系,美国大学城,TX 77843Mian Nadeem Riaz博士,德克萨斯农工大学食品科学与技术系,大学城,德克萨斯州77843,美国E-mail: mnriaz@tamu.edu https://doi.org/10.1094/CFW-65-4-0038©2020谷物与谷物协会谷物食品世界,2020年7 - 8月,第65卷,NO。4/ DOI: https://doi.org/10.1094/CFW-65-4-0038 (Lens culinaris)和蚕豆(Vicia faba)。脉冲蛋白可以作为大豆蛋白的替代品,因为它们含有较低的过敏原,是非转基因蛋白质来源,与大豆蛋白相比具有相似的氨基酸属性和消化率评分(1,3,7,9,11,14,17,19)。此外,脉冲蛋白有前途的技术功能属性(例如,溶解度、胶凝性、水结合性和质地性)可以在食品配方系统中提供额外的好处(1,3,5,9,10,20)。豌豆、扁豆和蚕豆蛋白质的结构组成和物理化学性质豆类是多功能作物,因为它们的显著组成,包括高蛋白质含量、复杂的碳水化合物(淀粉、非淀粉低聚糖和膳食纤维)、矿物质、维生素和植物化学物质(9,10,13,21,22)。豌豆(14 - 31%)、扁豆(21-31%)和蚕豆(19-39%)的高蛋白质含量被认为是重要的植物蛋白来源,是满足人类蛋白质摄入需求的增值成分的良好选择(10,11,14,23,24)。脉冲蛋白(表1)由主要的储存蛋白组成,包括球蛋白(可溶于盐溶液)和白蛋白(可溶于水),以及次要的蛋白质,如prolamins(可溶于酒精)和glutelins(可溶于稀酸或碱溶液)(10,11,12,14,23,24)。脉冲球蛋白是脉冲蛋白的主要储存蛋白,占种子蛋白的70-80%,是植物种子萌发过程中的营养储存库。脉冲球蛋白在不同的pH值下电离,受离子强度的影响(11,12)。根据脉象球蛋白的沉降系数,将脉象球蛋白分为豆科蛋白(11S)和维西林蛋白(7S)两大类。豌豆、扁豆和蚕豆中的主要球状蛋白为豆豆蛋白和荚膜蛋白,其荚膜蛋白/荚膜蛋白的比例分别为1-3:1(11、12、21、24-27)、10.1:1(14、26)和2:1(23、24),该比例与氨基酸分布、表面电荷、大小和外部因素(如加工、品种和生长环境)有关。球状蛋白之间的结构差异对脉冲蛋白的技术功能很重要,例如豌豆维西林比豌豆豆蛋白具有更高的凝胶能力(11,21,25)。此外,豌豆球蛋白还含有少量的信服蛋白(7S-8S)(11)。豆类蛋白(11S)是一种六聚体,分子量为300-410 kDa,有6个亚基(~ 60-65 kDa),由酸性a链(~40 kDa)和碱性b链(~20 kDa)组成,由于半胱氨酸残基的存在,这些多肽通过二硫桥共价连接(2,21,25)(21,28)。亲水a链位于分子外部,疏水b链位于分子内部(11)。Vicilin (7S)是一个由50-70 kDa亚基组成的145-190 kDa三聚体。豌豆毒素含有150 kDa的三聚体(3,11,25),而蚕豆毒素含有158-163 kDa的三聚体(12,23)。豌豆定罪蛋白(7S-8S)也是一个180-210 kDa的三聚体蛋白,包括一个~ 70-71 kDa的亚基(3,11,25)。由于缺乏含硫氨基酸(如蛋氨酸和半胱氨酸),维西林的亚基(a、b和g)通过非共价疏水性键连接(12,21,25)。Vicilin通过将主要亚基裂解为分子量较低的片段(10,11,17 - 20,25 - 30和30 - 36kda),比豆蔻蛋白含有更多的异质多肽(3,12,25)。 大豆成分因其显著的营养特性、生物利用度和技术功能而在植物蛋白工业中占有重要地位(3),从而增强了最终产品的质地特征(1,17)。为了满足植物性食品行业的需求,大豆成分(如大豆粗粒、大豆浓缩蛋白和大豆分离蛋白)已经得到了广泛的研究(1,17,18)。然而,在过去的二十年中,消费者对脉冲蛋白表现出了极大的兴趣,包括豌豆(Pisum sativum),扁豆低水分和高水分挤压脉冲蛋白作为植物性肉类成分:Serap Vatansever,1 Mehmet C. Tulbek,2 Mian N. Riaz3,4 1北达科他州立大学植物科学系,美国法戈581086050邮政信箱6050,2 AGT食品研发中心,加拿大萨斯卡顿,SK s7t0g3。3德克萨斯农工大学食品科学与技术系,美国大学城,TX 77843Mian Nadeem Riaz博士,德克萨斯农工大学食品科学与技术系,大学城,德克萨斯州77843,美国E-mail: mnriaz@tamu.edu https://doi.org/10.1094/CFW-65-4-0038©2020谷物与谷物协会谷物食品世界,2020年7 - 8月,第65卷,NO。4/ DOI: https://doi.org/10.1094/CFW-65-4-0038 (Lens culinaris)和蚕豆(Vicia faba)。脉冲蛋白可以作为大豆蛋白的替代品,因为它们含有较低的过敏原,是非转基因蛋白质来源,与大豆蛋白相比具有相似的氨基酸属性和消化率评分(1,3,7,9,11,14,17,19)。此外,脉冲蛋白有前途的技术功能属性(例如,溶解度、胶凝性、水结合性和质地性)可以在食品配方系统中提供额外的好处(1,3,5,9,10,20)。豌豆、扁豆和蚕豆蛋白质的结构组成和物理化学性质豆类是多功能作物,因为它们的显著组成,包括高蛋白质含量、复杂的碳水化合物(淀粉、非淀粉低聚糖和膳食纤维)、矿物质、维生素和植物化学物质(9,10,13,21,22)。豌豆(14 - 31%)、扁豆(21-31%)和蚕豆(19-39%)的高蛋白质含量被认为是重要的植物蛋白来源,是满足人类蛋白质摄入需求的增值成分的良好选择(10,11,14,23,24)。脉冲蛋白(表1)由主要的储存蛋白组成,包括球蛋白(可溶于盐溶液)和白蛋白(可溶于水),以及次要的蛋白质,如prolamins(可溶于酒精)和glutelins(可溶于稀酸或碱溶液)(10,11,12,14,23,24)。脉冲球蛋白是脉冲蛋白的主要储存蛋白,占种子蛋白的70-80%,是植物种子萌发过程中的营养储存库。脉冲球蛋白在不同的pH值下电离,受离子强度的影响(11,12)。根据脉象球蛋白的沉降系数,将脉象球蛋白分为豆科蛋白(11S)和维西林蛋白(7S)两大类。豌豆、扁豆和蚕豆中的主要球状蛋白为豆豆蛋白和荚膜蛋白,其荚膜蛋白/荚膜蛋白的比例分别为1-3:1(11、12、21、24-27)、10.1:1(14、26)和2:1(23、24),该比例与氨基酸分布、表面电荷、大小和外部因素(如加工、品种和生长环境)有关。球状蛋白之间的结构差异对脉冲蛋白的技术功能很重要,例如豌豆维西林比豌豆豆蛋白具有更高的凝胶能力(11,21,25)。此外,豌豆球蛋白还含有少量的信服蛋白(7S-8S)(11)。豆类蛋白(11S)是一种六聚体,分子量为300-410 kDa,有6个亚基(~ 60-65 kDa),由酸性a链(~40 kDa)和碱性b链(~20 kDa)组成,由于半胱氨酸残基的存在,这些多肽通过二硫桥共价连接(2,21,25)(21,28)。亲水a链位于分子外部,疏水b链位于分子内部(11)。Vicilin (7S)是一个由50-70 kDa亚基组成的145-190 kDa三聚体。豌豆毒素含有150 kDa的三聚体(3,11,25),而蚕豆毒素含有158-163 kDa的三聚体(12,23)。豌豆定罪蛋白(7S-8S)也是一个180-210 kDa的三聚体蛋白,包括一个~ 70-71 kDa的亚基(3,11,25)。由于缺乏含硫氨基酸(如蛋氨酸和半胱氨酸),维西林的亚基(a、b和g)通过非共价疏水性键连接(12,21,25)。Vicilin通过将主要亚基裂解为分子量较低的片段(10,11,17 - 20,25 - 30和30 - 36kda),比豆蔻蛋白含有更多的异质多肽(3,12,25)。 此外,其碳水化合物残基,通过g亚基的糖基化,允许比豆类更亲水的表面(11,21);这种碳水化合物残留物也存在于扁豆豆粕中(26)。此外,由于其多肽含量的异质性更高,维西林是一种比豆类更灵活的球状蛋白,并具有更好的界面活性,这可能有助于更好的凝胶形成(2) 此外,其碳水化合物残基,通过g亚基的糖基化,允许比豆类更亲水的表面(11,21);这种碳水化合物残留物也存在于扁豆豆粕中(26)。此外,由于其多肽含量的异质性更高,维西林是一种比豆类更灵活的球状蛋白,并具有更好的界面活性,这可能有助于更好的凝胶形成(2)
本文章由计算机程序翻译,如有差异,请以英文原文为准。