{"title":"PHOTOVOLTAICS LITERATURE SURVEY (No. 184)","authors":"Ziv Hameiri","doi":"10.1002/pip.3722","DOIUrl":null,"url":null,"abstract":"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Gorjian S, Jamshidian FJ, Gorjian A, et al <b>Technological advancements and research prospects of innovative concentrating agrivoltaics.</b> <i>Applied Energy</i> 2023; <b>337</b>: 120799.</p><p>Pochont NR, Sekhar Y R. <b>Recent trends in photovoltaic technologies for sustainable transportation in passenger vehicles – A review.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>181</b>: 113317.</p><p>Peng ZX, Zhang YW, Sun XK, et al <b>Real-time probing and unraveling the morphology formation of blade-coated ternary nonfullerene organic photovoltaics with in situ x-ray scattering.</b> <i>Advanced Functional Materials</i> 2023; <b>33</b>(14): 2213248.</p><p>Xu G, Ke Z, Zhuang C, et al <b>Measurements and analysis of solar spectrum in near space.</b> <i>Energy Reports</i> 2023; <b>9</b>: 1764–1773.</p><p>Nawrocki WJ, Jones MR, Frese RN, et al <b>In situ time-resolved spectroelectrochemistry reveals limitations of biohybrid photoelectrode performance.</b> <i>Joule</i> 2023; <b>7</b>(3): 529–544.</p><p>Le AHT, Srinivasa A, Bowden SG, et al <b>Temperature and illumination dependence of silicon heterojunction solar cells with a wide range of wafer resistivities.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 536–545.</p><p>Li B, Diallo D, Migan-Dubois A, et al <b>Performance evaluation of IEC 60891:2021 procedures for correcting I–V curves of photovoltaic modules under healthy and faulty conditions.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 474–493.</p><p>Bhavya Jyothi KN, Narasimhan KL, Arora BM, et al <b>Analysis and mitigation of errors in external quantum efficiency measurement of solar cells embedded in solar modules.</b> <i>Solar Energy</i> 2023; <b>258</b>: 319–324.</p><p>Li YJ, Li YX, Heger JE, et al <b>Revealing surface and interface evolution of molybdenum nitride as carrier-selective contacts for crystalline silicon solar cells.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(10): 13753–13760.</p><p>Hasumi M, Sameshima T, Mizuno T. <b>Passivation of cut edges of crystalline silicon by heat treatment in liquid water.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>: SK1022.</p><p>Theeuwes RJ, Melskens J, Beyer W, et al <b>Hydrogenation of p</b><sup>+</sup> <b>poly-Si by Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>nanolayers prepared by atomic layer deposition.</b> <i>Journal of Applied Physics</i> 2023; <b>133</b>(14): 145301.</p><p>Hallam B, Kim M, Zhang Y, et al <b>The silver learning curve for photovoltaics and projected silver demand for net-zero emissions by 2050.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 598–606.</p><p>Heilig M, Wurmbrand D, Hahn G, et al <b>A simplified and masking-free doping process for interdigitated back contact solar cells using an atmospheric pressure chemical vapor deposition borosilicate glass/phosphosilicate glass layer stack for laser doping followed by a high temperature step.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 607–616.</p><p>Park H, Kim J, Choi D, et al <b>Boron-doped polysilicon using spin-on doping for high-efficiency both-side passivating contact silicon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 461–473.</p><p>Tang T, Yu C, Peng C-W, et al <b>Achievement of 25.54% power conversion efficiency by optimization of current losses at the front side of silicon heterojunction solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 449–460.</p><p>Tepner S, Lorenz A. <b>Printing technologies for silicon solar cell metallization: A comprehensive review.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 557–590.</p><p>Guo C, Jia R, Li X, et al <b>Influence of backside surface morphology on passivation and contact characteristics of TOPCON solar cells.</b> <i>Solar Energy</i> 2023; <b>258</b>: 278–288.</p><p>Canar HH, Bektaş G, Turan R. <b>On the passivation performance of SiN</b><sub><b>x</b></sub><b>, SiO</b><sub><b>x</b></sub><b>N</b><sub><b>y</b></sub> <b>and their stack on c-Si wafers for solar cell applications: Correlation with optical, chemical and interface properties.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>256</b>: 112356.</p><p>Liu Z, Lin H, Wu T, et al <b>Tailoring protective metals for high-efficient and stable dopant-free crystalline silicon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>256</b>: 112343.</p><p>Michel JI, Yan D, Phang SP, et al <b>Poly-Si passivating contacts prepared via phosphorus spin-on-doping: A comparison between different silicon deposition methods.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>255</b>: 112290.</p><p>Padhamnath P, Choi W-J, De Luna G, et al <b>Design, development and analysis of large-area industrial silicon solar cells featuring a full area polysilicon based passivating contact on the rear and selective passivating contacts on the front.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>256</b>: 112351.</p><p>Sio HC, Stuckelberger J, Basnet R, et al <b>Improving doped polycrystalline silicon passivating contacts with magnesium fluoride.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>254</b>: 112251.</p><p>Wu SF, Liu M, Jen AKY. <b>Prospects and challenges for perovskite-organic tandem solar cells.</b> <i>Joule</i> 2023; <b>7</b>(3): 484–502.</p><p>Phong Pham D, Han S, Phuong Nguyen M, et al <b>Potential structure of c-Si bottom sub-cell in bifacial four-terminal III-V/c-Si multijunction devices.</b> <i>Solar Energy</i> 2023; <b>257</b>: 10–17.</p><p>Kabaklı ÖŞ, Kox J, Tutsch L, et al <b>Minimizing electro-optical losses of ITO layers for monolithic perovskite silicon tandem solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>254</b>: 112246.</p><p>Patil H, Kim H, Kadam KD, et al <b>Flexible organic–inorganic halide perovskite-based diffusive memristor for artificial nociceptors.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(10): 13238–13,248.</p><p>Ma LJ, Cui Y, Zhang JQ, et al <b>High-efficiency and mechanically robust all-polymer organic photovoltaic cells enabled by optimized fibril network morphology.</b> <i>Advanced Materials</i> 2023; <b>35</b>(9): 2208926.</p><p>Lv J, Yang QG, Deng WY, et al <b>Isomeric acceptors incorporation enables 18.1% efficiency ternary organic solar cells with reduced trap-assisted charge recombination.</b> <i>Chemical Engineering Journal</i> 2023; <b>465</b>: 142822.</p><p>Burlingame QC, Liu X, Ball ML, et al <b>Voltage-dependent excitation dynamics in UV-absorbing organic photovoltaics with efficient charge transfer exciton emission.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(4): 1742–1751.</p><p>Li SX, He CL, Chen TY, et al <b>Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2262–2,273.</p><p>Zhao XB, Sun R, Wu XH, et al <b>High-speed printing of a bulk-heterojunction architecture in organic solar cells films.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(4): 1711–1720.</p><p>Wang W, Cui Y, Zhang T, et al <b>High-performance organic photovoltaic cells under indoor lighting enabled by suppressing energetic disorders.</b> <i>Joule</i> 2023; <b>7</b>(5): 1067–1,079.</p><p>Yang Y, Wang JW, Zu YF, et al <b>Robust and hydrophobic interlayer material for efficient and highly stable organic solar cells.</b> <i>Joule</i> 2023; <b>7</b>(3): 545–557.</p><p>Kim TH, Park NW, Saeed MA, et al <b>Record indoor performance of organic photovoltaics with long-term stability enabled by self-assembled monolayer-based interface management.</b> <i>Nano Energy</i> 2023; <b>112</b>: 108429.</p><p>Liu M, Ge X, Jiang X, et al <b>18% efficiency of ternary organic solar cells enabled by integrating a fused perylene diimide guest acceptor.</b> <i>Nano Energy</i> 2023; <b>112</b>: 108501.</p><p>Fu JH, Fong PWK, Liu H, et al <b>19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1760.</p><p>Fu Y, Lee TH, Chin YC, et al <b>Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1870.</p><p>Jia ZR, Ma Q, Chen Z, et al <b>Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1236.</p><p>Li YX, Huang B, Zhang XN, et al <b>Lifetime over 10,000 hours for organic solar cells with Ir/IrO</b><sub><b>x</b></sub> <b>electron-transporting layer.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1241.</p><p>Wu X, Gao C, Chen Q, et al <b>High-performance vertical field-effect organic photovoltaics.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1579.</p><p>Venkatesan S, Chiang CY, Teng HS, et al <b>Monolithic quasi-solid-state dye sensitized solar cells prepared entirely by printing processes.</b> <i>Acs Sustainable Chemistry and Engineering</i> 2023; <b>11</b>(13): 5293–5,302.</p><p>Awai F, Sasaki M, Kinoshita T, et al <b>Energy-storable dye-sensitized solar cells with improved charge/discharge performance.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>(4): 044001.</p><p>Richhariya G, Kumar A, Shukla AK, et al <b>Efficient photosensitive light harvesting dye sensitized solar cell using hibiscus and rhodamine dyes.</b> <i>Journal of Power Sources</i> 2023; <b>572</b>: 233112.</p><p>Venkatesan S, My NHT, Teng HS, et al <b>Thin films of solid-state polymer electrolytes for dye-sensitized solar cells.</b> <i>Journal of Power Sources</i> 2023; <b>564</b>: 232896.</p><p>Zhou H, Kim HK. <b>Effective redox shuttles for polymer gel electrolytes-based quasi-solid-state dye-sensitized solar cells in outdoor and indoor applications: Comprehensive comparison and guidelines.</b> <i>Materials Today Energy</i> 2023; <b>34</b>: 101299.</p><p>Chen X, Huang Y, Chen Z. <b>Potential evaluation of an annular thermoelectric cooler driven by a dye-sensitized solar cell.</b> <i>Solar Energy</i> 2023; <b>258</b>: 351–360.</p><p>Ji XF, Zhou T, Fu Q, et al <b>Dopant-free two-dimensional hole transport small molecules enable efficient perovskite solar cells.</b> <i>Advanced Energy Materials</i> 2023; <b>13</b>(11): 2203756.</p><p>Chen CH, Wang ZK, Liao LS. <b>Perspective on perovskite indoor photovoltaics.</b> <i>Applied Physics Letters</i> 2023; <b>122</b>(13): 130501.</p><p>Huang J, Wang H, Chen C, et al <b>Adjustable skeleton of bilateral Lewis base passivator for CsPbI</b><sub><b>3</b></sub> <b>perovskite solar cells with PCE over 20% and superior stability.</b> <i>Chemical Engineering Journal</i> 2023; <b>466</b>: 143120.</p><p>Wang AL, Zuo CT, Niu XB, et al <b>Recent promise of lead-free halide perovskites in optoelectronic applications.</b> <i>Chemical Engineering Journal</i> 2023; <b>451</b>: 138926.</p><p>Xing YJ, Deng ZQ, Guo TH, et al <b>Managing iodine and tin based defects for efficient and stable mixed Sn-Pb perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2023; <b>462</b>: 142122.</p><p>Gao Y, Ren FM, Sun DR, et al <b>Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2295–2,303.</p><p>Kim Y, Kim G, Park EY, et al <b>Alkylammonium bis (trifluoromethylsulfonyl)imide as a dopant in the hole-transporting layer for efficient and stable perovskite solar cells.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2226–2,238.</p><p>Ritzer DB, Nejand BA, Ruiz-Preciado MA, et al <b>Translucent perovskite photovoltaics for building integration.</b> <i>Energy and Environmental Science</i> 2023; <b>16</b>(5): 2212–2,225.</p><p>Yang TH, Ma C, Cai WL, et al <b>Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells.</b> <i>Joule</i> 2023; <b>7</b>(3): 574–586.</p><p>Lan YJ, Wang YD, Lan ZR, et al <b>Thermally stable inverted perovskite solar cells using an electropolymerized Zn-porphyrin film as a dopant-free hole-transporting layer.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(13): 7085–7093.</p><p>Wang Y, Han MDX, Wang RB, et al <b>Buried interface passivation strategies for high-performance perovskite solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(16): 8573–8598.</p><p>Xie Z, Do Y, Choi SJ, et al <b>Perovskite solar cells approaching 25% PCE using side chain terminated hole transport materials with low concentration in a non-halogenated solvent process.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(17): 9608–9615.</p><p>Fan YP, Chen HR, Liu XM, et al <b>Myth behind metastable and stable n-hexylammonium bromide-based low-dimensional perovskites.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(14): 8209–8217.</p><p>Lou YJ, Zhang SS, Gu ZK, et al <b>Perovskite single crystals: Dimensional control, optoelectronic properties, and applications.</b> <i>Materials Today</i> 2023; <b>62</b>: 225–250.</p><p>Ma Y, Song QZ, Yang XY, et al <b>De-doping buried interface in p-i-n perovskite solar cells by utilizing compositional heterogeneity in depth.</b> <i>Nano Energy</i> 2023; <b>108</b>: 108250.</p><p>Seok HJ, Park JM, Jeong J, et al <b>Plasma damage-free deposition of transparent Sn-doped In</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>top cathode using isolated plasma soft deposition for perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>111</b>: 108431.</p><p>Wang HX, Zhang W, Wang BY, et al <b>Modulating buried interface with multi-fluorine containing organic molecule toward efficient NiO</b><sub><b>x</b></sub><b>-based inverted perovskite solar cell.</b> <i>Nano Energy</i> 2023; <b>111</b>: 108363.</p><p>Zou Y, Eichhorn J, Rieger S, et al <b>Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>112</b>: 108449.</p><p>Kim T, Park S, Iyer V, et al <b>Mapping the pathways of photo-induced ion migration in organic–inorganic hybrid halide perovskites.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 1846.</p><p>Ma CQ, Eickemeyer FT, Lee SH, et al <b>Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells.</b> <i>Science</i> 2023; <b>379</b>(6628): 173–178.</p><p>You S, Zeng HP, Liu YH, et al <b>Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules.</b> <i>Science</i> 2023; <b>379</b>(6629): 288–294.</p><p>Wu T, Hu JG, Chen S, et al <b>Energy band alignment by solution-processed aluminum doping strategy toward record efficiency in pulsed laser-deposited kesterite thin-film solar cell.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(11): 14291–14,303.</p><p>Xue JY, Yang XK, Bao XQ, et al <b>Improved carrier lifetimes of CdSe thin film via Te doping for photovoltaic application.</b> <i>Acs Applied Materials and Interfaces</i> 2023; <b>15</b>(14): 17858–17,866.</p><p>Shimamune Y, Tamaki H, Jimbo K. <b>Effect of post laser annealing on stacked structure of CZTS thin film solar cells.</b> <i>Japanese Journal of Applied Physics</i> 2023; <b>62</b>: SK1020.</p><p>Tao SY, Dong LZ, Han JS, et al <b>Efficiency enhancement of CZTSe solar cells based on in situ K-doped precursor.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(16): 9085–9,096.</p><p>Yilmaz P, de Wild J, Aninat R, et al <b>In-depth analysis of potential-induced degradation in a commercial CIGS PV module.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(6): 627–636.</p><p>Patel AK, Mishra R, Soni SK. <b>Electrical and optical parameters optimization and interface engineering for efficiency improvement of double CIGS absorber based solar cell.</b> <i>Solar Energy</i> 2023; <b>257</b>: 125–136.</p><p>Scarpulla MA, McCandless B, Phillips AB, et al <b>CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>255</b>: 112289.</p><p>Trifiletti V, Frioni L, Tseberlidis G, et al <b>Manganese-substituted kesterite thin-films for earth-abundant photovoltaic applications.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>254</b>: 112247.</p><p>Wang DD, Li YS, Yang YG, et al <b>How to minimize voltage and fill factor losses to achieve over 20% efficiency lead chalcogenide quantum dot solar cells: Strategies expected through numerical simulation.</b> <i>Applied Energy</i> 2023; <b>341</b>: 121124.</p><p>Li XF, Wang YL, Jia YW, et al <b>Polyethylenimine-based bifunctional interfacial layer for efficient quantum dot photovoltaics.</b> <i>Applied Physics Letters</i> 2023; <b>122</b>(12): 123904.</p><p>Du DX, Wang LN, Ding D, et al <b>One-step synthesis of aqueous CdTe/CdSe composite QDs toward efficiency enhancement of solar cell.</b> <i>Chemical Engineering Journal</i> 2023; <b>461</b>: 142040.</p><p>Pandi DV, Saraswathi V, Venkatraman MR, et al <b>PbS quantum dots-sensitized ZnO nanorods-based third generation solar cells.</b> <i>Materials Today Chemistry</i> 2023; <b>29</b>: 101444.</p><p>Yuan JB, Yang XY, Zheng D, et al <b>Perovskite quantum dot-based tandem triboelectric-solar cell for boosting the efficiency and rain energy harvesting.</b> <i>Nano Energy</i> 2023; <b>110</b>: 10834.</p><p>Hou B, Mocanu FC, Cho Y, et al <b>Evolution of local structural motifs in colloidal quantum dot semiconductor nanocrystals leading to nanofaceting.</b> <i>Nano Letters</i> 2023; <b>23</b>(6): 2277–2286.</p><p>Jin BB, Liu XJ, Dong LC, et al <b>Improving loading of CdS/CdSe co-sensitized quantum dots to enhance the performance of solar cells by voltage-assisted SILAR deposition.</b> <i>Solar Energy Materials and Solar Cells</i> 2023; <b>255</b>: 112293.</p><p>Chen X, Ding K, Yang H, et al <b>Research on real-time identification method of model parameters for the photovoltaic array.</b> <i>Applied Energy</i> 2023; <b>342</b>: 121157.</p><p>Ding L, Zhu Y, Zheng L, et al <b>What is the path of photovoltaic building (BIPV or BAPV) promotion? The perspective of evolutionary games.</b> <i>Applied Energy</i> 2023; <b>340</b>: 121033.</p><p>Khan ZA, Hussain T, Baik SW. <b>Dual stream network with attention mechanism for photovoltaic power forecasting.</b> <i>Applied Energy</i> 2023; <b>338</b>: 120916.</p><p>Lee S, Lee JH, Jeong Y, et al <b>Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment.</b> <i>Applied Energy</i> 2023; <b>341</b>: 121130.</p><p>Olczak P. <b>Evaluation of degradation energy productivity of photovoltaic installations in long-term case study.</b> <i>Applied Energy</i> 2023; <b>343</b>: 121109.</p><p>Pirayawaraporn A, Sappaniran S, Nooraksa S, et al <b>Innovative sensorless dual-axis solar tracking system using particle filter.</b> <i>Applied Energy</i> 2023; <b>338</b>: 120946.</p><p>Polasek T, Cadik M. <b>Predicting photovoltaic power production using high-uncertainty weather forecasts.</b> <i>Applied Energy</i> 2023; <b>339</b>: 120989.</p><p>Scott C, Ahsan M, Albarbar A. <b>Machine learning for forecasting a photovoltaic (PV) generation system.</b> <i>Energy</i> 2023; <b>278</b>: 127807.</p><p>Raina G, Sinha S. <b>Experimental investigations of front and rear side soiling on bifacial PV module under different installations and environmental conditions.</b> <i>Energy for Sustainable Development</i> 2023; <b>72</b>: 301–313.</p><p>Hajji M, Yahyaoui Z, Mansouri M, et al <b>Fault detection and diagnosis in grid-connected PV systems under irradiance variations.</b> <i>Energy Reports</i> 2023; <b>9</b>: 4005–4017.</p><p>Liu X, Huang C, Wang L, et al <b>Improved super-resolution perception convolutional neural network for photovoltaics missing data recovery.</b> <i>Energy Reports</i> 2023; <b>9</b>: 388–395.</p><p>Schallenberg-Rodriguez J, Rodrigo-Bello JJ, Río-Gamero BD. <b>Agrivoltaic: How much electricity could photovoltaic greenhouses supply?</b> <i>Energy Reports</i> 2023; <b>9</b>: 5420–5,431.</p><p>Soler-Castillo Y, Sahni M, Leon-Castro E. <b>Performance predictability of photovoltaic systems: An approach to simulate the I-V curve dynamics.</b> <i>Energy Reports</i> 2023; <b>9</b>: 234–269.</p><p>Zhang Z, Wang J, Wei D, et al <b>An improved temporal convolutional network with attention mechanism for photovoltaic generation forecasting.</b> <i>Engineering Applications of Artificial Intelligence</i> 2023; <b>123</b>: 106273.</p><p>Chen TF, Gu L, Dally WJ, et al <b>A novel high-efficiency three-phase multilevel PV inverter with reduced DC-link capacitance.</b> <i>IEEE Transactions on Industrial Electronics</i> 2023; <b>70</b>(5): 4751–4,761.</p><p>Pascual J, García M, Marcos J, et al <b>Analysis of polyamide and fluoropolymer backsheets: Degradation and insulation failure in field-aged photovoltaic modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 494–505.</p><p>Springer M, Jordan DC, Barnes TM. <b>Future-proofing photovoltaics module reliability through a unifying predictive modeling framework.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2023; <b>31</b>(5): 546–553.</p><p>Barbón A, Carreira-Fontao V, Bayón L, et al <b>Optimal design and cost analysis of single-axis tracking photovoltaic power plants.</b> <i>Renewable Energy</i> 2023; <b>211</b>: 626–646.</p><p>Di Giuseppe A, Cardinali M, Castellani B, et al <b>The impact of outdoor aging and soiling on the optic features of glass beads retro-reflective coatings.</b> <i>Solar Energy</i> 2023; <b>258</b>: 28–36.</p><p>Boiarkin V, Rajarajan M, Al-Zaili J, et al <b>A novel dynamic pricing model for a microgrid of prosumers with photovoltaic systems.</b> <i>Applied Energy</i> 2023; <b>342</b>: 121148.</p><p>Brown MA, Kale S, Kyeong-Cha M, et al <b>Exploring the willingness of consumers to electrify their homes.</b> <i>Applied Energy</i> 2023; <b>338</b>: 120791.</p><p>Song Z, Cao SL, Yang HX. <b>Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches.</b> <i>Applied Energy</i> 2023; <b>339</b>: 121005.</p><p>Agdas D, Barooah P. <b>On the economics of rooftop solar PV adoption.</b> <i>Energy Policy</i> 2023; <b>178</b>: 113611.</p><p>Lemay AC, Wagner S, Rand BP. <b>Current status and future potential of rooftop solar adoption in the United States.</b> <i>Energy Policy</i> 2023; <b>177</b>: 113571.</p><p>Ben Slama S, Mahmoud M. <b>A deep learning model for intelligent home energy management system using renewable energy.</b> <i>Engineering Applications of Artificial Intelligence</i> 2023; <b>123</b>: 106388.</p><p>Yeligeti M, Hu W, Scholz Y, et al <b>Cropland and rooftops: The global undertapped potential for solar photovoltaics.</b> <i>Environmental Research Letters</i> 2023; <b>18</b>(5): 054027.</p><p>Jia QA, Li YY, Yan Z, et al <b>Reactive power market design for distribution networks with high photovoltaic penetration.</b> <i>IEEE Transactions on Smart Grid</i> 2023; <b>14</b>(2): 1642–1,651.</p><p>Oteng D, Zuo J, Sharifi E. <b>An evaluation of the impact framework for product stewardship on end-of-life solar photovoltaic modules: An environmental lifecycle assessment.</b> <i>Journal of Cleaner Production</i> 2023; <b>411</b>: 137357.</p><p>Rossi F, Zuffi C, Parisi ML, et al <b>Comparative scenario-based LCA of renewable energy technologies focused on the end-of-life evaluation.</b> <i>Journal of Cleaner Production</i> 2023; <b>405</b>: 136931.</p><p>Zhao S, Yu L, Zhang Z. <b>Photovoltaic supply chain and government subsidy decision-making based on China's industrial distributed photovoltaic policy: A power perspective.</b> <i>Journal of Cleaner Production</i> 2023; <b>413</b>: 137438.</p><p>Zhang Z, Chen M, Zhong T, et al <b>Carbon mitigation potential afforded by rooftop photovoltaic in China.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 2347.</p><p>Mao H, Chen X, Luo Y, et al <b>Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images.</b> <i>Renewable and Sustainable Energy Reviews</i> 2023; <b>179</b>: 113276.</p><p>He J, Iqbal W, Su F. <b>Nexus between renewable energy investment, green finance, and sustainable development: Role of industrial structure and technical innovations.</b> <i>Renewable Energy</i> 2023; <b>210</b>: 715–724.</p><p>Sun G, Li G, Dilanchiev A, et al <b>Promotion of green financing: Role of renewable energy and energy transition in China.</b> <i>Renewable Energy</i> 2023; <b>210</b>: 769–775.</p><p>Polverini D, Espinosa N, Eynard U, et al <b>Assessing the carbon footprint of photovoltaic modules through the EU Ecodesign Directive.</b> <i>Solar Energy</i> 2023; <b>257</b>: 1–9.</p><p>Rao RR, Priyadarshani S, Mani M. <b>Examining the use of end-of-life (EoL) PV panels in housing and sustainability.</b> <i>Solar Energy</i> 2023; <b>257</b>: 210–220.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"31 8","pages":"870-874"},"PeriodicalIF":8.0000,"publicationDate":"2023-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3722","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3722","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to help readers stay up-to-date in the field, each issue of Progress in Photovoltaics will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Journal of Photovoltaics, Solar Energy Materials and Solar Cells, Renewable Energy, Renewable and Sustainable Energy Reviews, Journal of Applied Physics, and Applied Physics Letters. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at [email protected].
Gorjian S, Jamshidian FJ, Gorjian A, et al Technological advancements and research prospects of innovative concentrating agrivoltaics.Applied Energy 2023; 337: 120799.
Pochont NR, Sekhar Y R. Recent trends in photovoltaic technologies for sustainable transportation in passenger vehicles – A review.Renewable and Sustainable Energy Reviews 2023; 181: 113317.
Peng ZX, Zhang YW, Sun XK, et al Real-time probing and unraveling the morphology formation of blade-coated ternary nonfullerene organic photovoltaics with in situ x-ray scattering.Advanced Functional Materials 2023; 33(14): 2213248.
Xu G, Ke Z, Zhuang C, et al Measurements and analysis of solar spectrum in near space.Energy Reports 2023; 9: 1764–1773.
Nawrocki WJ, Jones MR, Frese RN, et al In situ time-resolved spectroelectrochemistry reveals limitations of biohybrid photoelectrode performance.Joule 2023; 7(3): 529–544.
Le AHT, Srinivasa A, Bowden SG, et al Temperature and illumination dependence of silicon heterojunction solar cells with a wide range of wafer resistivities.Progress in Photovoltaics: Research and Applications 2023; 31(5): 536–545.
Li B, Diallo D, Migan-Dubois A, et al Performance evaluation of IEC 60891:2021 procedures for correcting I–V curves of photovoltaic modules under healthy and faulty conditions.Progress in Photovoltaics: Research and Applications 2023; 31(5): 474–493.
Bhavya Jyothi KN, Narasimhan KL, Arora BM, et al Analysis and mitigation of errors in external quantum efficiency measurement of solar cells embedded in solar modules.Solar Energy 2023; 258: 319–324.
Li YJ, Li YX, Heger JE, et al Revealing surface and interface evolution of molybdenum nitride as carrier-selective contacts for crystalline silicon solar cells.Acs Applied Materials and Interfaces 2023; 15(10): 13753–13760.
Hasumi M, Sameshima T, Mizuno T. Passivation of cut edges of crystalline silicon by heat treatment in liquid water.Japanese Journal of Applied Physics 2023; 62: SK1022.
Theeuwes RJ, Melskens J, Beyer W, et al Hydrogenation of p+poly-Si by Al2O3nanolayers prepared by atomic layer deposition.Journal of Applied Physics 2023; 133(14): 145301.
Hallam B, Kim M, Zhang Y, et al The silver learning curve for photovoltaics and projected silver demand for net-zero emissions by 2050.Progress in Photovoltaics: Research and Applications 2023; 31(6): 598–606.
Heilig M, Wurmbrand D, Hahn G, et al A simplified and masking-free doping process for interdigitated back contact solar cells using an atmospheric pressure chemical vapor deposition borosilicate glass/phosphosilicate glass layer stack for laser doping followed by a high temperature step.Progress in Photovoltaics: Research and Applications 2023; 31(6): 607–616.
Park H, Kim J, Choi D, et al Boron-doped polysilicon using spin-on doping for high-efficiency both-side passivating contact silicon solar cells.Progress in Photovoltaics: Research and Applications 2023; 31(5): 461–473.
Tang T, Yu C, Peng C-W, et al Achievement of 25.54% power conversion efficiency by optimization of current losses at the front side of silicon heterojunction solar cells.Progress in Photovoltaics: Research and Applications 2023; 31(5): 449–460.
Tepner S, Lorenz A. Printing technologies for silicon solar cell metallization: A comprehensive review.Progress in Photovoltaics: Research and Applications 2023; 31(6): 557–590.
Guo C, Jia R, Li X, et al Influence of backside surface morphology on passivation and contact characteristics of TOPCON solar cells.Solar Energy 2023; 258: 278–288.
Canar HH, Bektaş G, Turan R. On the passivation performance of SiNx, SiOxNyand their stack on c-Si wafers for solar cell applications: Correlation with optical, chemical and interface properties.Solar Energy Materials and Solar Cells 2023; 256: 112356.
Liu Z, Lin H, Wu T, et al Tailoring protective metals for high-efficient and stable dopant-free crystalline silicon solar cells.Solar Energy Materials and Solar Cells 2023; 256: 112343.
Michel JI, Yan D, Phang SP, et al Poly-Si passivating contacts prepared via phosphorus spin-on-doping: A comparison between different silicon deposition methods.Solar Energy Materials and Solar Cells 2023; 255: 112290.
Padhamnath P, Choi W-J, De Luna G, et al Design, development and analysis of large-area industrial silicon solar cells featuring a full area polysilicon based passivating contact on the rear and selective passivating contacts on the front.Solar Energy Materials and Solar Cells 2023; 256: 112351.
Sio HC, Stuckelberger J, Basnet R, et al Improving doped polycrystalline silicon passivating contacts with magnesium fluoride.Solar Energy Materials and Solar Cells 2023; 254: 112251.
Wu SF, Liu M, Jen AKY. Prospects and challenges for perovskite-organic tandem solar cells.Joule 2023; 7(3): 484–502.
Phong Pham D, Han S, Phuong Nguyen M, et al Potential structure of c-Si bottom sub-cell in bifacial four-terminal III-V/c-Si multijunction devices.Solar Energy 2023; 257: 10–17.
Kabaklı ÖŞ, Kox J, Tutsch L, et al Minimizing electro-optical losses of ITO layers for monolithic perovskite silicon tandem solar cells.Solar Energy Materials and Solar Cells 2023; 254: 112246.
Patil H, Kim H, Kadam KD, et al Flexible organic–inorganic halide perovskite-based diffusive memristor for artificial nociceptors.Acs Applied Materials and Interfaces 2023; 15(10): 13238–13,248.
Ma LJ, Cui Y, Zhang JQ, et al High-efficiency and mechanically robust all-polymer organic photovoltaic cells enabled by optimized fibril network morphology.Advanced Materials 2023; 35(9): 2208926.
Lv J, Yang QG, Deng WY, et al Isomeric acceptors incorporation enables 18.1% efficiency ternary organic solar cells with reduced trap-assisted charge recombination.Chemical Engineering Journal 2023; 465: 142822.
Burlingame QC, Liu X, Ball ML, et al Voltage-dependent excitation dynamics in UV-absorbing organic photovoltaics with efficient charge transfer exciton emission.Energy and Environmental Science 2023; 16(4): 1742–1751.
Li SX, He CL, Chen TY, et al Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency.Energy and Environmental Science 2023; 16(5): 2262–2,273.
Zhao XB, Sun R, Wu XH, et al High-speed printing of a bulk-heterojunction architecture in organic solar cells films.Energy and Environmental Science 2023; 16(4): 1711–1720.
Wang W, Cui Y, Zhang T, et al High-performance organic photovoltaic cells under indoor lighting enabled by suppressing energetic disorders.Joule 2023; 7(5): 1067–1,079.
Yang Y, Wang JW, Zu YF, et al Robust and hydrophobic interlayer material for efficient and highly stable organic solar cells.Joule 2023; 7(3): 545–557.
Kim TH, Park NW, Saeed MA, et al Record indoor performance of organic photovoltaics with long-term stability enabled by self-assembled monolayer-based interface management.Nano Energy 2023; 112: 108429.
Liu M, Ge X, Jiang X, et al 18% efficiency of ternary organic solar cells enabled by integrating a fused perylene diimide guest acceptor.Nano Energy 2023; 112: 108501.
Fu JH, Fong PWK, Liu H, et al 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition.Nature Communications 2023; 14(1): 1760.
Fu Y, Lee TH, Chin YC, et al Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance.Nature Communications 2023; 14(1): 1870.
Jia ZR, Ma Q, Chen Z, et al Near-infrared absorbing acceptor with suppressed triplet exciton generation enabling high performance tandem organic solar cells.Nature Communications 2023; 14(1): 1236.
Li YX, Huang B, Zhang XN, et al Lifetime over 10,000 hours for organic solar cells with Ir/IrOxelectron-transporting layer.Nature Communications 2023; 14(1): 1241.
Wu X, Gao C, Chen Q, et al High-performance vertical field-effect organic photovoltaics.Nature Communications 2023; 14(1): 1579.
Venkatesan S, Chiang CY, Teng HS, et al Monolithic quasi-solid-state dye sensitized solar cells prepared entirely by printing processes.Acs Sustainable Chemistry and Engineering 2023; 11(13): 5293–5,302.
Awai F, Sasaki M, Kinoshita T, et al Energy-storable dye-sensitized solar cells with improved charge/discharge performance.Japanese Journal of Applied Physics 2023; 62(4): 044001.
Richhariya G, Kumar A, Shukla AK, et al Efficient photosensitive light harvesting dye sensitized solar cell using hibiscus and rhodamine dyes.Journal of Power Sources 2023; 572: 233112.
Venkatesan S, My NHT, Teng HS, et al Thin films of solid-state polymer electrolytes for dye-sensitized solar cells.Journal of Power Sources 2023; 564: 232896.
Zhou H, Kim HK. Effective redox shuttles for polymer gel electrolytes-based quasi-solid-state dye-sensitized solar cells in outdoor and indoor applications: Comprehensive comparison and guidelines.Materials Today Energy 2023; 34: 101299.
Chen X, Huang Y, Chen Z. Potential evaluation of an annular thermoelectric cooler driven by a dye-sensitized solar cell.Solar Energy 2023; 258: 351–360.
Ji XF, Zhou T, Fu Q, et al Dopant-free two-dimensional hole transport small molecules enable efficient perovskite solar cells.Advanced Energy Materials 2023; 13(11): 2203756.
Chen CH, Wang ZK, Liao LS. Perspective on perovskite indoor photovoltaics.Applied Physics Letters 2023; 122(13): 130501.
Huang J, Wang H, Chen C, et al Adjustable skeleton of bilateral Lewis base passivator for CsPbI3perovskite solar cells with PCE over 20% and superior stability.Chemical Engineering Journal 2023; 466: 143120.
Wang AL, Zuo CT, Niu XB, et al Recent promise of lead-free halide perovskites in optoelectronic applications.Chemical Engineering Journal 2023; 451: 138926.
Xing YJ, Deng ZQ, Guo TH, et al Managing iodine and tin based defects for efficient and stable mixed Sn-Pb perovskite solar cells.Chemical Engineering Journal 2023; 462: 142122.
Gao Y, Ren FM, Sun DR, et al Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells.Energy and Environmental Science 2023; 16(5): 2295–2,303.
Kim Y, Kim G, Park EY, et al Alkylammonium bis (trifluoromethylsulfonyl)imide as a dopant in the hole-transporting layer for efficient and stable perovskite solar cells.Energy and Environmental Science 2023; 16(5): 2226–2,238.
Ritzer DB, Nejand BA, Ruiz-Preciado MA, et al Translucent perovskite photovoltaics for building integration.Energy and Environmental Science 2023; 16(5): 2212–2,225.
Yang TH, Ma C, Cai WL, et al Amidino-based Dion-Jacobson 2D perovskite for efficient and stable 2D/3D heterostructure perovskite solar cells.Joule 2023; 7(3): 574–586.
Lan YJ, Wang YD, Lan ZR, et al Thermally stable inverted perovskite solar cells using an electropolymerized Zn-porphyrin film as a dopant-free hole-transporting layer.Journal of Materials Chemistry A 2023; 11(13): 7085–7093.
Wang Y, Han MDX, Wang RB, et al Buried interface passivation strategies for high-performance perovskite solar cells.Journal of Materials Chemistry A 2023; 11(16): 8573–8598.
Xie Z, Do Y, Choi SJ, et al Perovskite solar cells approaching 25% PCE using side chain terminated hole transport materials with low concentration in a non-halogenated solvent process.Journal of Materials Chemistry A 2023; 11(17): 9608–9615.
Fan YP, Chen HR, Liu XM, et al Myth behind metastable and stable n-hexylammonium bromide-based low-dimensional perovskites.Journal of the American Chemical Society 2023; 145(14): 8209–8217.
Lou YJ, Zhang SS, Gu ZK, et al Perovskite single crystals: Dimensional control, optoelectronic properties, and applications.Materials Today 2023; 62: 225–250.
Ma Y, Song QZ, Yang XY, et al De-doping buried interface in p-i-n perovskite solar cells by utilizing compositional heterogeneity in depth.Nano Energy 2023; 108: 108250.
Seok HJ, Park JM, Jeong J, et al Plasma damage-free deposition of transparent Sn-doped In2O3top cathode using isolated plasma soft deposition for perovskite solar cells.Nano Energy 2023; 111: 108431.
Wang HX, Zhang W, Wang BY, et al Modulating buried interface with multi-fluorine containing organic molecule toward efficient NiOx-based inverted perovskite solar cell.Nano Energy 2023; 111: 108363.
Zou Y, Eichhorn J, Rieger S, et al Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells.Nano Energy 2023; 112: 108449.
Kim T, Park S, Iyer V, et al Mapping the pathways of photo-induced ion migration in organic–inorganic hybrid halide perovskites.Nature Communications 2023; 14(1): 1846.
Ma CQ, Eickemeyer FT, Lee SH, et al Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells.Science 2023; 379(6628): 173–178.
You S, Zeng HP, Liu YH, et al Radical polymeric p-doping and grain modulation for stable, efficient perovskite solar modules.Science 2023; 379(6629): 288–294.
Wu T, Hu JG, Chen S, et al Energy band alignment by solution-processed aluminum doping strategy toward record efficiency in pulsed laser-deposited kesterite thin-film solar cell.Acs Applied Materials and Interfaces 2023; 15(11): 14291–14,303.
Xue JY, Yang XK, Bao XQ, et al Improved carrier lifetimes of CdSe thin film via Te doping for photovoltaic application.Acs Applied Materials and Interfaces 2023; 15(14): 17858–17,866.
Shimamune Y, Tamaki H, Jimbo K. Effect of post laser annealing on stacked structure of CZTS thin film solar cells.Japanese Journal of Applied Physics 2023; 62: SK1020.
Tao SY, Dong LZ, Han JS, et al Efficiency enhancement of CZTSe solar cells based on in situ K-doped precursor.Journal of Materials Chemistry A 2023; 11(16): 9085–9,096.
Yilmaz P, de Wild J, Aninat R, et al In-depth analysis of potential-induced degradation in a commercial CIGS PV module.Progress in Photovoltaics: Research and Applications 2023; 31(6): 627–636.
Patel AK, Mishra R, Soni SK. Electrical and optical parameters optimization and interface engineering for efficiency improvement of double CIGS absorber based solar cell.Solar Energy 2023; 257: 125–136.
Scarpulla MA, McCandless B, Phillips AB, et al CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects.Solar Energy Materials and Solar Cells 2023; 255: 112289.
Trifiletti V, Frioni L, Tseberlidis G, et al Manganese-substituted kesterite thin-films for earth-abundant photovoltaic applications.Solar Energy Materials and Solar Cells 2023; 254: 112247.
Wang DD, Li YS, Yang YG, et al How to minimize voltage and fill factor losses to achieve over 20% efficiency lead chalcogenide quantum dot solar cells: Strategies expected through numerical simulation.Applied Energy 2023; 341: 121124.
Li XF, Wang YL, Jia YW, et al Polyethylenimine-based bifunctional interfacial layer for efficient quantum dot photovoltaics.Applied Physics Letters 2023; 122(12): 123904.
Du DX, Wang LN, Ding D, et al One-step synthesis of aqueous CdTe/CdSe composite QDs toward efficiency enhancement of solar cell.Chemical Engineering Journal 2023; 461: 142040.
Pandi DV, Saraswathi V, Venkatraman MR, et al PbS quantum dots-sensitized ZnO nanorods-based third generation solar cells.Materials Today Chemistry 2023; 29: 101444.
Yuan JB, Yang XY, Zheng D, et al Perovskite quantum dot-based tandem triboelectric-solar cell for boosting the efficiency and rain energy harvesting.Nano Energy 2023; 110: 10834.
Hou B, Mocanu FC, Cho Y, et al Evolution of local structural motifs in colloidal quantum dot semiconductor nanocrystals leading to nanofaceting.Nano Letters 2023; 23(6): 2277–2286.
Jin BB, Liu XJ, Dong LC, et al Improving loading of CdS/CdSe co-sensitized quantum dots to enhance the performance of solar cells by voltage-assisted SILAR deposition.Solar Energy Materials and Solar Cells 2023; 255: 112293.
Chen X, Ding K, Yang H, et al Research on real-time identification method of model parameters for the photovoltaic array.Applied Energy 2023; 342: 121157.
Ding L, Zhu Y, Zheng L, et al What is the path of photovoltaic building (BIPV or BAPV) promotion? The perspective of evolutionary games.Applied Energy 2023; 340: 121033.
Khan ZA, Hussain T, Baik SW. Dual stream network with attention mechanism for photovoltaic power forecasting.Applied Energy 2023; 338: 120916.
Lee S, Lee JH, Jeong Y, et al Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment.Applied Energy 2023; 341: 121130.
Olczak P. Evaluation of degradation energy productivity of photovoltaic installations in long-term case study.Applied Energy 2023; 343: 121109.
Pirayawaraporn A, Sappaniran S, Nooraksa S, et al Innovative sensorless dual-axis solar tracking system using particle filter.Applied Energy 2023; 338: 120946.
Polasek T, Cadik M. Predicting photovoltaic power production using high-uncertainty weather forecasts.Applied Energy 2023; 339: 120989.
Scott C, Ahsan M, Albarbar A. Machine learning for forecasting a photovoltaic (PV) generation system.Energy 2023; 278: 127807.
Raina G, Sinha S. Experimental investigations of front and rear side soiling on bifacial PV module under different installations and environmental conditions.Energy for Sustainable Development 2023; 72: 301–313.
Hajji M, Yahyaoui Z, Mansouri M, et al Fault detection and diagnosis in grid-connected PV systems under irradiance variations.Energy Reports 2023; 9: 4005–4017.
Liu X, Huang C, Wang L, et al Improved super-resolution perception convolutional neural network for photovoltaics missing data recovery.Energy Reports 2023; 9: 388–395.
Schallenberg-Rodriguez J, Rodrigo-Bello JJ, Río-Gamero BD. Agrivoltaic: How much electricity could photovoltaic greenhouses supply?Energy Reports 2023; 9: 5420–5,431.
Soler-Castillo Y, Sahni M, Leon-Castro E. Performance predictability of photovoltaic systems: An approach to simulate the I-V curve dynamics.Energy Reports 2023; 9: 234–269.
Zhang Z, Wang J, Wei D, et al An improved temporal convolutional network with attention mechanism for photovoltaic generation forecasting.Engineering Applications of Artificial Intelligence 2023; 123: 106273.
Chen TF, Gu L, Dally WJ, et al A novel high-efficiency three-phase multilevel PV inverter with reduced DC-link capacitance.IEEE Transactions on Industrial Electronics 2023; 70(5): 4751–4,761.
Pascual J, García M, Marcos J, et al Analysis of polyamide and fluoropolymer backsheets: Degradation and insulation failure in field-aged photovoltaic modules.Progress in Photovoltaics: Research and Applications 2023; 31(5): 494–505.
Springer M, Jordan DC, Barnes TM. Future-proofing photovoltaics module reliability through a unifying predictive modeling framework.Progress in Photovoltaics: Research and Applications 2023; 31(5): 546–553.
Barbón A, Carreira-Fontao V, Bayón L, et al Optimal design and cost analysis of single-axis tracking photovoltaic power plants.Renewable Energy 2023; 211: 626–646.
Di Giuseppe A, Cardinali M, Castellani B, et al The impact of outdoor aging and soiling on the optic features of glass beads retro-reflective coatings.Solar Energy 2023; 258: 28–36.
Boiarkin V, Rajarajan M, Al-Zaili J, et al A novel dynamic pricing model for a microgrid of prosumers with photovoltaic systems.Applied Energy 2023; 342: 121148.
Brown MA, Kale S, Kyeong-Cha M, et al Exploring the willingness of consumers to electrify their homes.Applied Energy 2023; 338: 120791.
Song Z, Cao SL, Yang HX. Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches.Applied Energy 2023; 339: 121005.
Agdas D, Barooah P. On the economics of rooftop solar PV adoption.Energy Policy 2023; 178: 113611.
Lemay AC, Wagner S, Rand BP. Current status and future potential of rooftop solar adoption in the United States.Energy Policy 2023; 177: 113571.
Ben Slama S, Mahmoud M. A deep learning model for intelligent home energy management system using renewable energy.Engineering Applications of Artificial Intelligence 2023; 123: 106388.
Yeligeti M, Hu W, Scholz Y, et al Cropland and rooftops: The global undertapped potential for solar photovoltaics.Environmental Research Letters 2023; 18(5): 054027.
Jia QA, Li YY, Yan Z, et al Reactive power market design for distribution networks with high photovoltaic penetration.IEEE Transactions on Smart Grid 2023; 14(2): 1642–1,651.
Oteng D, Zuo J, Sharifi E. An evaluation of the impact framework for product stewardship on end-of-life solar photovoltaic modules: An environmental lifecycle assessment.Journal of Cleaner Production 2023; 411: 137357.
Rossi F, Zuffi C, Parisi ML, et al Comparative scenario-based LCA of renewable energy technologies focused on the end-of-life evaluation.Journal of Cleaner Production 2023; 405: 136931.
Zhao S, Yu L, Zhang Z. Photovoltaic supply chain and government subsidy decision-making based on China's industrial distributed photovoltaic policy: A power perspective.Journal of Cleaner Production 2023; 413: 137438.
Zhang Z, Chen M, Zhong T, et al Carbon mitigation potential afforded by rooftop photovoltaic in China.Nature Communications 2023; 14(1): 2347.
Mao H, Chen X, Luo Y, et al Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images.Renewable and Sustainable Energy Reviews 2023; 179: 113276.
He J, Iqbal W, Su F. Nexus between renewable energy investment, green finance, and sustainable development: Role of industrial structure and technical innovations.Renewable Energy 2023; 210: 715–724.
Sun G, Li G, Dilanchiev A, et al Promotion of green financing: Role of renewable energy and energy transition in China.Renewable Energy 2023; 210: 769–775.
Polverini D, Espinosa N, Eynard U, et al Assessing the carbon footprint of photovoltaic modules through the EU Ecodesign Directive.Solar Energy 2023; 257: 1–9.
Rao RR, Priyadarshani S, Mani M. Examining the use of end-of-life (EoL) PV panels in housing and sustainability.Solar Energy 2023; 257: 210–220.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.