Genome analysis of five recently described species of the CUG-Ser clade uncovers Candida theae as a new hybrid lineage with pathogenic potential in the Candida parapsilosis species complex
V. Mixão, Valentina del Olmo, Eva Hegedűsová, E. Saus, Leszek P. Pryszcz, Andrea Cillingová, J. Nosek, T. Gabaldón
{"title":"Genome analysis of five recently described species of the CUG-Ser clade uncovers Candida theae as a new hybrid lineage with pathogenic potential in the Candida parapsilosis species complex","authors":"V. Mixão, Valentina del Olmo, Eva Hegedűsová, E. Saus, Leszek P. Pryszcz, Andrea Cillingová, J. Nosek, T. Gabaldón","doi":"10.1093/dnares/dsac010","DOIUrl":null,"url":null,"abstract":"Abstract Candida parapsilosis species complex comprises three important pathogenic species: Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis. The majority of C. orthopsilosis and all C. metapsilosis isolates sequenced thus far are hybrids, and most of the parental lineages remain unidentified. This led to the hypothesis that hybrids with pathogenic potential were formed by the hybridization of non-pathogenic lineages that thrive in the environment. In a search for the missing hybrid parentals, and aiming to get a better understanding of the evolution of the species complex, we sequenced, assembled and analysed the genome of five close relatives isolated from the environment: Candida jiufengensis, Candida pseudojiufengensis, Candida oxycetoniae, Candida margitis and Candida theae. We found that the linear conformation of mitochondrial genomes in Candida species emerged multiple times independently. Furthermore, our analyses discarded the possible involvement of these species in the mentioned hybridizations, but identified C. theae as an additional hybrid in the species complex. Importantly, C. theae was recently associated with a case of infection, and we also uncovered the hybrid nature of this clinical isolate. Altogether, our results reinforce the hypothesis that hybridization is widespread among Candida species, and potentially contributes to the emergence of lineages with opportunistic pathogenic behaviour.","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":"29 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsac010","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Candida parapsilosis species complex comprises three important pathogenic species: Candida parapsilosis sensu stricto, Candida orthopsilosis and Candida metapsilosis. The majority of C. orthopsilosis and all C. metapsilosis isolates sequenced thus far are hybrids, and most of the parental lineages remain unidentified. This led to the hypothesis that hybrids with pathogenic potential were formed by the hybridization of non-pathogenic lineages that thrive in the environment. In a search for the missing hybrid parentals, and aiming to get a better understanding of the evolution of the species complex, we sequenced, assembled and analysed the genome of five close relatives isolated from the environment: Candida jiufengensis, Candida pseudojiufengensis, Candida oxycetoniae, Candida margitis and Candida theae. We found that the linear conformation of mitochondrial genomes in Candida species emerged multiple times independently. Furthermore, our analyses discarded the possible involvement of these species in the mentioned hybridizations, but identified C. theae as an additional hybrid in the species complex. Importantly, C. theae was recently associated with a case of infection, and we also uncovered the hybrid nature of this clinical isolate. Altogether, our results reinforce the hypothesis that hybridization is widespread among Candida species, and potentially contributes to the emergence of lineages with opportunistic pathogenic behaviour.
期刊介绍:
DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.