Heterogeneous Nanodomain Electrolytes for Ultra-Long-Life All-Solid-State Lithium-Metal Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Leixin Yang, Dan Luo, Yun Zheng, Tingzhou Yang, Qianyi Ma, Yihang Nie, Haozhen Dou, Yongguang Zhang, Rong Huang, Aiping Yu, Lingling Shui, Xin Wang, Zhongwei Chen
{"title":"Heterogeneous Nanodomain Electrolytes for Ultra-Long-Life All-Solid-State Lithium-Metal Batteries","authors":"Leixin Yang,&nbsp;Dan Luo,&nbsp;Yun Zheng,&nbsp;Tingzhou Yang,&nbsp;Qianyi Ma,&nbsp;Yihang Nie,&nbsp;Haozhen Dou,&nbsp;Yongguang Zhang,&nbsp;Rong Huang,&nbsp;Aiping Yu,&nbsp;Lingling Shui,&nbsp;Xin Wang,&nbsp;Zhongwei Chen","doi":"10.1002/adfm.202204778","DOIUrl":null,"url":null,"abstract":"<p>Solid polymer electrolytes exhibit huge advantages but are hindered by insufficient mechanical strength and ionic conductivity in the applications of all-solid-state lithium-metal batteries (ASSLBs). Herein, poly(ether-block-amide) (Pebax) strategies to construct heterogeneous nanodomain electrolytes (HNEs) for ultra-long-life ASSLBs are introduced. Pebax HNEs forms conductive nanodomains via phase separation, exhibiting interconnected and high Li<sup>+</sup> conductive features. Compared with conventional PEO-based electrolytes, the Pebax HNEs with controllable size and order can facilitate rapid Li<sup>+</sup> transport with steerable transport channels, further enhancing the Li<sup>+</sup> conductivity and inducing the uniform Li<sup>+</sup> deposition. Furthermore, the obtained thin and dense hybrid SEI layer with potent mechanical strength can synergistically suppress the dendrite growth, and the as-prepared ASSLBs exhibit a satisfactory capacity with a tiny capacity reduction of 0.013% per cycle over 1500 cycles. This work provides a brand-new insight to construct a conductive structure in electrolytes for high-performance ASSLBs.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"32 36","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202204778","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 17

Abstract

Solid polymer electrolytes exhibit huge advantages but are hindered by insufficient mechanical strength and ionic conductivity in the applications of all-solid-state lithium-metal batteries (ASSLBs). Herein, poly(ether-block-amide) (Pebax) strategies to construct heterogeneous nanodomain electrolytes (HNEs) for ultra-long-life ASSLBs are introduced. Pebax HNEs forms conductive nanodomains via phase separation, exhibiting interconnected and high Li+ conductive features. Compared with conventional PEO-based electrolytes, the Pebax HNEs with controllable size and order can facilitate rapid Li+ transport with steerable transport channels, further enhancing the Li+ conductivity and inducing the uniform Li+ deposition. Furthermore, the obtained thin and dense hybrid SEI layer with potent mechanical strength can synergistically suppress the dendrite growth, and the as-prepared ASSLBs exhibit a satisfactory capacity with a tiny capacity reduction of 0.013% per cycle over 1500 cycles. This work provides a brand-new insight to construct a conductive structure in electrolytes for high-performance ASSLBs.

Abstract Image

超长寿命全固态锂金属电池的非均质纳米畴电解质
固体聚合物电解质具有巨大的优势,但在全固态锂金属电池(ASSLBs)的应用中,机械强度和离子电导率不足是阻碍。本文介绍了聚醚-嵌段酰胺(Pebax)构建超长寿命asslb非均相纳米畴电解质(HNEs)的策略。Pebax HNEs通过相分离形成导电纳米畴,表现出相互连接和高Li+导电性。与传统的Pebax氢离子电解质相比,尺寸和顺序可控的Pebax氢离子电解质可以通过可操纵的输运通道促进Li+的快速输运,进一步提高Li+的电导率,诱导Li+均匀沉积。此外,获得的薄而致密的杂化SEI层具有强大的机械强度,可以协同抑制枝晶的生长,制备的asslb在1500次循环中表现出令人满意的容量,每循环容量减少0.013%。本研究为构建高性能asslb的电解质导电结构提供了全新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信