Lixue Yang, Haoqi Yang, Shengyan Yin, Xiuyan Wang, Mingwei Xu, Guolong Lu, Zhenning Liu, Hang Sun
{"title":"Fe Single-Atom Catalyst for Efficient and Rapid Fenton-Like Degradation of Organics and Disinfection against Bacteria","authors":"Lixue Yang, Haoqi Yang, Shengyan Yin, Xiuyan Wang, Mingwei Xu, Guolong Lu, Zhenning Liu, Hang Sun","doi":"10.1002/smll.202104941","DOIUrl":null,"url":null,"abstract":"<p>The Fenton-like reaction has great potential in water treatment. Herein, an efficient and reusable catalytic system is developed based on atomically dispersed Fe catalyst by anchoring Fe atoms on nitrogen-doped porous carbon (Fe SA/NPCs). The catalyst of Fe SA/NPCs exhibits enhanced performance in activating peroxymonosulfate (PMS) for organic pollutant degradation and bacterial inactivation. The Fe SA/NPCs + PMS system demonstrates a high turnover frequency of 39.31 min<sup>−1</sup> in Rhodamine B (RhB) degradation as well as a strong bactericidal activity that can completely sterilize an <i>Escherichia coli</i> culture within 5 min. Meanwhile, the degradation activity of RhB by Fe SA/NPCs is improved up to 28 to 371-fold in comparison with the controls. Complete degradation of RhB can be achieved in 30 s by the Fe SA/NPCs + PMS system, demonstrating an efficiency much higher than most traditional Fenton-like processes. Experiments with different radical scavengers and density functional theory calculations have revealed that singlet oxygen (<sup>1</sup>O<sub>2</sub>) generated on the N-coordinated single Fe atom (Fe-N<sub>4</sub>) sites is the key reactive species for the effective and rapid pollutant degradation and bacterial inactivation. This work innovatively affords a promising single-Fe-atom catalyst/PMS system for applying Fenton-like reactions in water treatment.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"18 9","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202104941","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 48
Abstract
The Fenton-like reaction has great potential in water treatment. Herein, an efficient and reusable catalytic system is developed based on atomically dispersed Fe catalyst by anchoring Fe atoms on nitrogen-doped porous carbon (Fe SA/NPCs). The catalyst of Fe SA/NPCs exhibits enhanced performance in activating peroxymonosulfate (PMS) for organic pollutant degradation and bacterial inactivation. The Fe SA/NPCs + PMS system demonstrates a high turnover frequency of 39.31 min−1 in Rhodamine B (RhB) degradation as well as a strong bactericidal activity that can completely sterilize an Escherichia coli culture within 5 min. Meanwhile, the degradation activity of RhB by Fe SA/NPCs is improved up to 28 to 371-fold in comparison with the controls. Complete degradation of RhB can be achieved in 30 s by the Fe SA/NPCs + PMS system, demonstrating an efficiency much higher than most traditional Fenton-like processes. Experiments with different radical scavengers and density functional theory calculations have revealed that singlet oxygen (1O2) generated on the N-coordinated single Fe atom (Fe-N4) sites is the key reactive species for the effective and rapid pollutant degradation and bacterial inactivation. This work innovatively affords a promising single-Fe-atom catalyst/PMS system for applying Fenton-like reactions in water treatment.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.