{"title":"A SEMIPARAMETRIC MULTIPLE IMPUTATION APPROACH TO FULLY SYNTHETIC DATA FOR COMPLEX SURVEYS.","authors":"Mandi Yu, Yulei He, Trivellore E Raghunathan","doi":"10.1093/jssam/smac016","DOIUrl":null,"url":null,"abstract":"<p><p>Data synthesis is an effective statistical approach for reducing data disclosure risk. Generating fully synthetic data might minimize such risk, but its modeling and application can be difficult for data from large, complex surveys. This article extended the two-stage imputation to simultaneously impute item missing values and generate fully synthetic data. A new combining rule for making inferences using data generated in this manner was developed. Two semiparametric missing data imputation models were adapted to generate fully synthetic data for skewed continuous variable and sparse binary variable, respectively. The proposed approach was evaluated using simulated data and real longitudinal data from the Health and Retirement Study. The proposed approach was also compared with two existing synthesis approaches: (1) parametric regressions models as implemented in <i>IVEware</i>; and (2) nonparametric Classification and Regression Trees as implemented in <i>synthpop</i> package for R using real data. The results show that high data utility is maintained for a wide variety of descriptive and model-based statistics using the proposed strategy. The proposed strategy also performs better than existing methods for sophisticated analyses such as factor analysis.</p>","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Survey Statistics and Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smac016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Data synthesis is an effective statistical approach for reducing data disclosure risk. Generating fully synthetic data might minimize such risk, but its modeling and application can be difficult for data from large, complex surveys. This article extended the two-stage imputation to simultaneously impute item missing values and generate fully synthetic data. A new combining rule for making inferences using data generated in this manner was developed. Two semiparametric missing data imputation models were adapted to generate fully synthetic data for skewed continuous variable and sparse binary variable, respectively. The proposed approach was evaluated using simulated data and real longitudinal data from the Health and Retirement Study. The proposed approach was also compared with two existing synthesis approaches: (1) parametric regressions models as implemented in IVEware; and (2) nonparametric Classification and Regression Trees as implemented in synthpop package for R using real data. The results show that high data utility is maintained for a wide variety of descriptive and model-based statistics using the proposed strategy. The proposed strategy also performs better than existing methods for sophisticated analyses such as factor analysis.
期刊介绍:
The Journal of Survey Statistics and Methodology, sponsored by AAPOR and the American Statistical Association, began publishing in 2013. Its objective is to publish cutting edge scholarly articles on statistical and methodological issues for sample surveys, censuses, administrative record systems, and other related data. It aims to be the flagship journal for research on survey statistics and methodology. Topics of interest include survey sample design, statistical inference, nonresponse, measurement error, the effects of modes of data collection, paradata and responsive survey design, combining data from multiple sources, record linkage, disclosure limitation, and other issues in survey statistics and methodology. The journal publishes both theoretical and applied papers, provided the theory is motivated by an important applied problem and the applied papers report on research that contributes generalizable knowledge to the field. Review papers are also welcomed. Papers on a broad range of surveys are encouraged, including (but not limited to) surveys concerning business, economics, marketing research, social science, environment, epidemiology, biostatistics and official statistics. The journal has three sections. The Survey Statistics section presents papers on innovative sampling procedures, imputation, weighting, measures of uncertainty, small area inference, new methods of analysis, and other statistical issues related to surveys. The Survey Methodology section presents papers that focus on methodological research, including methodological experiments, methods of data collection and use of paradata. The Applications section contains papers involving innovative applications of methods and providing practical contributions and guidance, and/or significant new findings.