Regulating Reversible Oxygen Electrocatalysis by Built-in Electric Field of Heterojunction Electrocatalyst with Modified d-Band

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2023-01-05 DOI:10.1002/smll.202207474
Chaohui He, Qingqing Liu, Hongming Wang, Chenfeng Xia, Fu-Min Li, Wei Guo, Bao Yu Xia
{"title":"Regulating Reversible Oxygen Electrocatalysis by Built-in Electric Field of Heterojunction Electrocatalyst with Modified d-Band","authors":"Chaohui He,&nbsp;Qingqing Liu,&nbsp;Hongming Wang,&nbsp;Chenfeng Xia,&nbsp;Fu-Min Li,&nbsp;Wei Guo,&nbsp;Bao Yu Xia","doi":"10.1002/smll.202207474","DOIUrl":null,"url":null,"abstract":"<p>Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott–Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate <i>d</i>-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"19 15","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202207474","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

Abstract

Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott–Schottky heterojunction composed of porous cobalt–nitrogen–carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott–Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.

Abstract Image

改性d带异质结电催化剂内建电场调控可逆氧电催化
开发用于氧电化学反应的双功能催化剂是实现高性能电化学能量装置的必要条件。本文报道了一种含有丰富金属磷化物的多孔钴-氮-碳(Co-N-C)多面体组成的用于可逆氧电催化的Mott-Schottky异质结。作为证明,该催化剂在氧电催化中表现出优异的活性,从而在可充电锌空气电池(ZABs)中表现出优异的性能。在氧电催化中,莫特-肖特基异质结内嵌电场能促进电子转移。更重要的是,异质结催化剂适当的d带中心也赋予氧中间体平衡的吸附/解吸能力,从而增强氧电催化,从而提高ZABs的性能。该研究为能量转换技术中制备高效多功能催化剂提供了重要的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信