{"title":"Nanozyme-Enabled Treatment of Cardio- and Cerebrovascular Diseases","authors":"Yihong Zhang, Wanling Liu, Xiaoyu Wang, Yufeng Liu, Hui Wei","doi":"10.1002/smll.202204809","DOIUrl":null,"url":null,"abstract":"<p>Cardio- and cerebrovascular diseases are two major vascular-related diseases that lead to death worldwide. Reactive oxygen species (ROS) play a vital role in the occurrence and exacerbation of diseases. Excessive ROS induce cellular context damage and lead to tissue dysfunction. Nanozymes, as emerging enzyme mimics, offer a unique perspective for therapy through multifunctional activities, achieving essential results in the treatment of ROS-related cardio- and cerebrovascular diseases by directly scavenging excess ROS or regulating pathologically related molecules. This review first introduces nanozyme-enabled therapeutic mechanisms at the cellular level. Then, the therapies for several typical cardio- and cerebrovascular diseases with nanozymes are discussed, mainly including cardiovascular diseases, ischemia reperfusion injury, and neurological disorders. Finally, the challenges and outlooks for the application of nanozymes are also presented. This review will provide some instructive perspectives on nanozymes and promote the development of enzyme-mimicking strategies in cardio- and cerebrovascular disease therapy.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"19 13","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202204809","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13
Abstract
Cardio- and cerebrovascular diseases are two major vascular-related diseases that lead to death worldwide. Reactive oxygen species (ROS) play a vital role in the occurrence and exacerbation of diseases. Excessive ROS induce cellular context damage and lead to tissue dysfunction. Nanozymes, as emerging enzyme mimics, offer a unique perspective for therapy through multifunctional activities, achieving essential results in the treatment of ROS-related cardio- and cerebrovascular diseases by directly scavenging excess ROS or regulating pathologically related molecules. This review first introduces nanozyme-enabled therapeutic mechanisms at the cellular level. Then, the therapies for several typical cardio- and cerebrovascular diseases with nanozymes are discussed, mainly including cardiovascular diseases, ischemia reperfusion injury, and neurological disorders. Finally, the challenges and outlooks for the application of nanozymes are also presented. This review will provide some instructive perspectives on nanozymes and promote the development of enzyme-mimicking strategies in cardio- and cerebrovascular disease therapy.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.