{"title":"Skin precursor-derived Schwann cells accelerate in vivo prevascularization of tissue-engineered nerves to promote peripheral nerve regeneration","authors":"Meiyuan Li, Xiyang Cheng, Shuyue Feng, Hui Zhu, Panjian Lu, Ping Zhang, Xiaodong Cai, Pingping Qiao, Xiaosong Gu, Gang Wang, Chengbin Xue, Hongkui Wang","doi":"10.1002/glia.24367","DOIUrl":null,"url":null,"abstract":"<p>Prevascularization strategies have become a hot spot in tissue engineering. As one of the potential candidates for seed cells, skin precursor-derived Schwann cells (SKP-SCs) were endowed with a new role to more efficiently construct prevascularized tissue-engineered peripheral nerves. The silk fibroin scaffolds seeded with SKP-SCs were prevascularized through subcutaneously implantation, which was further assembled with the SKP-SC-containing chitosan conduit. SKP-SCs expressed pro-angiogenic factors in vitro and in vivo. SKP-SCs significantly accelerated the satisfied prevascularization in vivo of silk fibroin scaffolds compared with VEGF. Moreover, the NGF expression revealed that pregenerated blood vessels adapted to the nerve regeneration microenvironment through reeducation. The short-term nerve regeneration of SKP-SCs-prevascularization was obviously superior to that of non-prevascularization. At 12 weeks postinjury, both SKP-SCs-prevascularization and VEGF-prevascularization significantly improved nerve regeneration with a comparable degree. Our figures provide a new enlightenment for the optimization of prevascularization strategies and how to further utilize tissue engineering for better repair.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"71 7","pages":"1755-1769"},"PeriodicalIF":5.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/glia.24367","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Prevascularization strategies have become a hot spot in tissue engineering. As one of the potential candidates for seed cells, skin precursor-derived Schwann cells (SKP-SCs) were endowed with a new role to more efficiently construct prevascularized tissue-engineered peripheral nerves. The silk fibroin scaffolds seeded with SKP-SCs were prevascularized through subcutaneously implantation, which was further assembled with the SKP-SC-containing chitosan conduit. SKP-SCs expressed pro-angiogenic factors in vitro and in vivo. SKP-SCs significantly accelerated the satisfied prevascularization in vivo of silk fibroin scaffolds compared with VEGF. Moreover, the NGF expression revealed that pregenerated blood vessels adapted to the nerve regeneration microenvironment through reeducation. The short-term nerve regeneration of SKP-SCs-prevascularization was obviously superior to that of non-prevascularization. At 12 weeks postinjury, both SKP-SCs-prevascularization and VEGF-prevascularization significantly improved nerve regeneration with a comparable degree. Our figures provide a new enlightenment for the optimization of prevascularization strategies and how to further utilize tissue engineering for better repair.
期刊介绍:
GLIA is a peer-reviewed journal, which publishes articles dealing with all aspects of glial structure and function. This includes all aspects of glial cell biology in health and disease.