{"title":"High-Entropy Surface Complex Stabilized LiCoO2 Cathode","authors":"Xinghua Tan, Yongxin Zhang, Shenyang Xu, Peihua Yang, Tongchao Liu, Dongdong Mao, Jimin Qiu, Zhefeng Chen, Zhaoxia Lu, Feng Pan, Weiguo Chu","doi":"10.1002/aenm.202300147","DOIUrl":null,"url":null,"abstract":"<p>Elevating the charge voltage of LiCoO<sub>2</sub> increases the energy density of batteries, which is highly enticing in energy storage implementation ranging from portable electronics to e-vehicles. However, hybrid redox reactions at high voltages facilitate oxygen evolution, electrolyte decomposition and irreversible phase change, and accordingly lead to rapid battery capacity decay. Here significantly improved high-voltage cycling stability of Mg-Al-Eu co-doped LiCoO<sub>2</sub> is demonstrated. It is found that element co-doping induces a near-surface high-entropy zone, including an innately thin disordered rock-salt shell and a dopant segregation surface. The high-entropy complex can effectively suppress oxygen evolution and near-surface structure deconstruction. The phase change reversibility between O3 and H1-3 and thermal stability of the cathode are greatly enhanced as well. As a result, the co-doped LiCoO<sub>2</sub> exhibits a remarkable cycling performance, retaining 86.3% and 72.0% of initial capacity over 800 and 2000 cycles, respectively, with a high cut-off voltage of 4.6 V. The feasible co-doping approach broadens the perspective for the development of stable lithium-ion batteries with high operating voltages.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"13 24","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202300147","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Elevating the charge voltage of LiCoO2 increases the energy density of batteries, which is highly enticing in energy storage implementation ranging from portable electronics to e-vehicles. However, hybrid redox reactions at high voltages facilitate oxygen evolution, electrolyte decomposition and irreversible phase change, and accordingly lead to rapid battery capacity decay. Here significantly improved high-voltage cycling stability of Mg-Al-Eu co-doped LiCoO2 is demonstrated. It is found that element co-doping induces a near-surface high-entropy zone, including an innately thin disordered rock-salt shell and a dopant segregation surface. The high-entropy complex can effectively suppress oxygen evolution and near-surface structure deconstruction. The phase change reversibility between O3 and H1-3 and thermal stability of the cathode are greatly enhanced as well. As a result, the co-doped LiCoO2 exhibits a remarkable cycling performance, retaining 86.3% and 72.0% of initial capacity over 800 and 2000 cycles, respectively, with a high cut-off voltage of 4.6 V. The feasible co-doping approach broadens the perspective for the development of stable lithium-ion batteries with high operating voltages.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.