Chunxin Liu, Taras Oriekhov, Cherrie Lee, Clarissa M Harvey, Michael Fokine
{"title":"Rapid Fabrication of Silica Microlens Arrays via Glass 3D Printing.","authors":"Chunxin Liu, Taras Oriekhov, Cherrie Lee, Clarissa M Harvey, Michael Fokine","doi":"10.1089/3dp.2022.0112","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid manufacturing of high purity fused silica glass micro-optics using a filament-based glass 3D printer has been demonstrated. A multilayer 5 × 5 microlens array was printed and subsequently characterized, showing fully dense lenses with uniform focal lengths and good imaging performance. A surface roughness on the order of <i>R<sub>a</sub></i> = 0.12 nm was achieved. Printing time for each lens was <10 s. Creating arrays with multifocal imaging capabilities was possible by individually varying the number of printed layers and radius for each lens, effectively changing the lens height and curvature. Glass 3D printing is shown in this study to be a versatile approach for fabricating silica micro-optics suitable for rapid prototyping or manufacturing.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"460-466"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0112","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid manufacturing of high purity fused silica glass micro-optics using a filament-based glass 3D printer has been demonstrated. A multilayer 5 × 5 microlens array was printed and subsequently characterized, showing fully dense lenses with uniform focal lengths and good imaging performance. A surface roughness on the order of Ra = 0.12 nm was achieved. Printing time for each lens was <10 s. Creating arrays with multifocal imaging capabilities was possible by individually varying the number of printed layers and radius for each lens, effectively changing the lens height and curvature. Glass 3D printing is shown in this study to be a versatile approach for fabricating silica micro-optics suitable for rapid prototyping or manufacturing.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.