P. Szewczyk, Sara Metwally, Zuzanna J. Krysiak, Łukasz Kaniuk, J. Karbowniczek, U. Stachewicz
{"title":"Enhanced osteoblasts adhesion and collagen formation on biomimetic polyvinylidene fluoride (PVDF) films for bone regeneration","authors":"P. Szewczyk, Sara Metwally, Zuzanna J. Krysiak, Łukasz Kaniuk, J. Karbowniczek, U. Stachewicz","doi":"10.1088/1748-605X/ab3c20","DOIUrl":null,"url":null,"abstract":"Bone tissue engineering can be utilized to study the early events of osteoconduction. Fundamental research in cell adhesion to various geometries and proliferation has shown the potential of extending it to implantable devices for regenerative medicine. Following this concept in our studies, first, we developed well-controlled processing of polyvinylidene fluoride (PVDF) film to obtain a surface biomimicking ECM. We optimized the manufacturing dependent on humidity and temperature during spin-coating of a polymer solution. The mixture of solvents such as dimethylacetamide and acetone together with high humidity conditions led to a biomimetic, highly porous and rough surface, while with lower humidity and high temperatures drying allowed us to obtain a smooth and flat PVDF film. The roughness of the PVDF film was biofabricated and compared to smooth films in cell culture studies for adhesion and proliferation of osteoblasts. The bioinspired roughness of our films enhanced the osteoblast adhesion by over 44%, and there was collagen formation already after 7 days of cell culturing that was proved via scanning electron microscopy observation, light microscopy imaging after Sirius Red staining, and proliferation test such as MTS. Cell development, via extended filopodia, formed profoundly on the rough PVDF surface, demonstrated the potential of the structural design of biomimetic surfaces to enhance further bone tissue regeneration.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"14 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab3c20","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab3c20","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 13
Abstract
Bone tissue engineering can be utilized to study the early events of osteoconduction. Fundamental research in cell adhesion to various geometries and proliferation has shown the potential of extending it to implantable devices for regenerative medicine. Following this concept in our studies, first, we developed well-controlled processing of polyvinylidene fluoride (PVDF) film to obtain a surface biomimicking ECM. We optimized the manufacturing dependent on humidity and temperature during spin-coating of a polymer solution. The mixture of solvents such as dimethylacetamide and acetone together with high humidity conditions led to a biomimetic, highly porous and rough surface, while with lower humidity and high temperatures drying allowed us to obtain a smooth and flat PVDF film. The roughness of the PVDF film was biofabricated and compared to smooth films in cell culture studies for adhesion and proliferation of osteoblasts. The bioinspired roughness of our films enhanced the osteoblast adhesion by over 44%, and there was collagen formation already after 7 days of cell culturing that was proved via scanning electron microscopy observation, light microscopy imaging after Sirius Red staining, and proliferation test such as MTS. Cell development, via extended filopodia, formed profoundly on the rough PVDF surface, demonstrated the potential of the structural design of biomimetic surfaces to enhance further bone tissue regeneration.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters