{"title":"Minimal model program for semi-stable threefolds in mixed characteristic","authors":"Teppei Takamatsu, Shou Yoshikawa","doi":"10.1090/jag/813","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the minimal model theory for threefolds in mixed characteristic. As a generalization of a result of Kawamata, we show that the minimal model program (MMP) holds for strictly semi-stable schemes over an excellent Dedekind scheme <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\n <mml:semantics>\n <mml:mi>V</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of relative dimension two without any assumption on the residue characteristics of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\n <mml:semantics>\n <mml:mi>V</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We also prove that we can run a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper K Subscript upper X slash upper V Baseline plus normal upper Delta right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mi>K</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>X</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>V</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>+</mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(K_{X/V}+\\Delta )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-MMP over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Z\">\n <mml:semantics>\n <mml:mi>Z</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Z</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi colon upper X right-arrow upper Z\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>Z</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\pi \\colon X \\to Z</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a projective birational morphism of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-factorial quasi-projective <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V\">\n <mml:semantics>\n <mml:mi>V</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">V</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-schemes and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper X comma normal upper Delta right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(X,\\Delta )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is a three-dimensional dlt pair with <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E x c left-parenthesis pi right-parenthesis subset-of left floor normal upper Delta right floor\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>E</mml:mi>\n <mml:mi>x</mml:mi>\n <mml:mi>c</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>π<!-- π --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊂<!-- ⊂ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">⌊<!-- ⌊ --></mml:mo>\n <mml:mi mathvariant=\"normal\">Δ<!-- Δ --></mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">⌋<!-- ⌋ --></mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">Exc(\\pi ) \\subset \\lfloor \\Delta \\rfloor</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/813","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 24
Abstract
In this paper, we study the minimal model theory for threefolds in mixed characteristic. As a generalization of a result of Kawamata, we show that the minimal model program (MMP) holds for strictly semi-stable schemes over an excellent Dedekind scheme VV of relative dimension two without any assumption on the residue characteristics of VV. We also prove that we can run a (KX/V+Δ)(K_{X/V}+\Delta )-MMP over ZZ, where π:X→Z\pi \colon X \to Z is a projective birational morphism of Q\mathbb {Q}-factorial quasi-projective VV-schemes and (X,Δ)(X,\Delta ) is a three-dimensional dlt pair with Exc(π)⊂⌊Δ⌋Exc(\pi ) \subset \lfloor \Delta \rfloor.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.