Gorenstein modifications and \mathds{𝑄}-Gorenstein rings

IF 0.9 1区 数学 Q2 MATHEMATICS
Hailong Dao, O. Iyama, Ryo Takahashi, M. Wemyss
{"title":"Gorenstein modifications and \\mathds{𝑄}-Gorenstein rings","authors":"Hailong Dao, O. Iyama, Ryo Takahashi, M. Wemyss","doi":"10.1090/JAG/760","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a Cohen–Macaulay normal domain with a canonical module <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"omega Subscript upper R\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>ω<!-- ω --></mml:mi>\n <mml:mi>R</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\omega _R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. It is proved that if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> admits a noncommutative crepant resolution (NCCR), then necessarily it is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathds {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Gorenstein. Writing <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\n <mml:semantics>\n <mml:mi>S</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for a Zariski local canonical cover of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, a tight relationship between the existence of noncommutative (crepant) resolutions on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper R\">\n <mml:semantics>\n <mml:mi>R</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">R</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S\">\n <mml:semantics>\n <mml:mi>S</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">S</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is given. A weaker notion of Gorenstein modification is developed, and a similar tight relationship is given. There are three applications: non-Gorenstein quotient singularities by connected reductive groups cannot admit an NCCR, the centre of any NCCR is log-terminal, and the Auslander–Esnault classification of two-dimensional CM-finite algebras can be deduced from Buchweitz–Greuel–Schreyer.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/760","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/760","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Let R R be a Cohen–Macaulay normal domain with a canonical module ω R \omega _R . It is proved that if R R admits a noncommutative crepant resolution (NCCR), then necessarily it is Q \mathds {Q} -Gorenstein. Writing S S for a Zariski local canonical cover of R R , a tight relationship between the existence of noncommutative (crepant) resolutions on R R and S S is given. A weaker notion of Gorenstein modification is developed, and a similar tight relationship is given. There are three applications: non-Gorenstein quotient singularities by connected reductive groups cannot admit an NCCR, the centre of any NCCR is log-terminal, and the Auslander–Esnault classification of two-dimensional CM-finite algebras can be deduced from Buchweitz–Greuel–Schreyer.

Gorenstein修正和\数学{𝑄}-Gorenstein环
设R R是一个柯恩-麦考利正规定义域,其正则模为R。证明了如果R R允许非交换蠕变分解(NCCR),则它必然是Q \mathds {Q} -Gorenstein。对R R的Zariski局部正则盖写S S,给出了R R上非交换(渐变)分辨的存在性与S S之间的紧密关系。提出了一个较弱的Gorenstein修正概念,并给出了一个类似的紧密关系。有三种应用:连通约化群的非gorenstein商奇点不允许存在NCCR,任何NCCR的中心都是log-terminal,二维cm有限代数的Auslander-Esnault分类可以由Buchweitz-Greuel-Schreyer导出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信