Uniqueness of embeddings of the affine line into algebraic groups

IF 0.9 1区 数学 Q2 MATHEMATICS
P. Feller, Immanuel Stampfli
{"title":"Uniqueness of embeddings of the affine line into algebraic groups","authors":"P. Feller, Immanuel Stampfli","doi":"10.1090/JAG/725","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be the underlying variety of a complex connected affine algebraic group. We prove that two embeddings of the affine line <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> into <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are the same up to an automorphism of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> provided that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is not isomorphic to a product of a torus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis double-struck upper C Superscript asterisk Baseline right-parenthesis Superscript k\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mo>∗<!-- ∗ --></mml:mo>\n </mml:msup>\n <mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mi>k</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">(\\mathbb {C}^\\ast )^k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and one of the three varieties <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C cubed\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}^3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper L 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>SL</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {SL}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P upper S upper L 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>PSL</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {PSL}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/725","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/725","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

Let Y Y be the underlying variety of a complex connected affine algebraic group. We prove that two embeddings of the affine line C \mathbb {C} into Y Y are the same up to an automorphism of Y Y provided that Y Y is not isomorphic to a product of a torus ( C ) k (\mathbb {C}^\ast )^k and one of the three varieties C 3 \mathbb {C}^3 , SL 2 \operatorname {SL}_2 , and  PSL 2 \operatorname {PSL}_2 .

仿射线嵌入代数群的唯一性
设Y Y为复连通仿射代数群的基变。我们证明了仿射线C \mathbb {C}在Y Y中的两个嵌入是相同的,直到Y Y的自同构,条件是Y Y不同构于环面(C∗)k (\mathbb {C}^\ast)^k与三个变体c3 \mathbb {C}^3, SL 2 \operatorname {SL}_2,和PSL 2 \operatorname {PSL}_2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信