Stable rationality of orbifold Fano 3-fold hypersurfaces

IF 0.9 1区 数学 Q2 MATHEMATICS
Takuzo Okada
{"title":"Stable rationality of orbifold Fano 3-fold hypersurfaces","authors":"Takuzo Okada","doi":"10.1090/JAG/712","DOIUrl":null,"url":null,"abstract":"<p>We determine the rationality of very general quasi-smooth Fano <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-fold weighted hypersurfaces completely and determine the stable rationality of them except for cubic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-folds. More precisely we prove that (i) very general Fano <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-fold weighted hypersurfaces of index <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\">\n <mml:semantics>\n <mml:mn>1</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> or <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are not stably rational except possibly for the cubic 3-folds, (ii) among the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"27\">\n <mml:semantics>\n <mml:mn>27</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">27</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> families of Fano 3-fold weighted hypersurfaces of index greater than <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, very general members of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"7\">\n <mml:semantics>\n <mml:mn>7</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">7</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> specific families are not stably rational, and the remaining <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"20\">\n <mml:semantics>\n <mml:mn>20</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">20</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> families consist of rational varieties.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2016-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/JAG/712","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/712","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

We determine the rationality of very general quasi-smooth Fano 3 3 -fold weighted hypersurfaces completely and determine the stable rationality of them except for cubic 3 3 -folds. More precisely we prove that (i) very general Fano 3 3 -fold weighted hypersurfaces of index 1 1 or 2 2 are not stably rational except possibly for the cubic 3-folds, (ii) among the 27 27 families of Fano 3-fold weighted hypersurfaces of index greater than 2 2 , very general members of 7 7 specific families are not stably rational, and the remaining 20 20 families consist of rational varieties.

轨道Fano三重超曲面的稳定合理性
完整地确定了非常一般的拟光滑Fano 3 - 3折加权超曲面的合理性,并确定了除三次3 - 3折外的其他超曲面的稳定合理性。更确切地说,我们证明了(i)指数11或22的非常一般的Fano 3-fold加权超曲面除了可能的三次3-fold外,是不稳定有理的;(ii)指数大于22的Fano 3-fold加权超曲面的2727个族中,有77个特定族的非常一般的成员是不稳定有理的,其余2020个族由有理变种组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信