Himanshu Gupta, Achim J. Lilienthal, Henrik Andreasson, Polina Kurtser
{"title":"NDT-6D for color registration in agri-robotic applications","authors":"Himanshu Gupta, Achim J. Lilienthal, Henrik Andreasson, Polina Kurtser","doi":"10.1002/rob.22194","DOIUrl":null,"url":null,"abstract":"<p>Registration of point cloud data containing both depth and color information is critical for a variety of applications, including in-field robotic plant manipulation, crop growth modeling, and autonomous navigation. However, current state-of-the-art registration methods often fail in challenging agricultural field conditions due to factors such as occlusions, plant density, and variable illumination. To address these issues, we propose the NDT-6D registration method, which is a color-based variation of the Normal Distribution Transform (NDT) registration approach for point clouds. Our method computes correspondences between pointclouds using both geometric and color information and minimizes the distance between these correspondences using only the three-dimensional (3D) geometric dimensions. We evaluate the method using the GRAPES3D data set collected with a commercial-grade RGB-D sensor mounted on a mobile platform in a vineyard. Results show that registration methods that only rely on depth information fail to provide quality registration for the tested data set. The proposed color-based variation outperforms state-of-the-art methods with a root mean square error (RMSE) of 1.1–1.6 cm for NDT-6D compared with 1.1–2.3 cm for other color-information-based methods and 1.2–13.7 cm for noncolor-information-based methods. The proposed method is shown to be robust against noises using the TUM RGBD data set by artificially adding noise present in an outdoor scenario. The relative pose error (RPE) increased <math>\n <semantics>\n <mrow>\n <mo>~</mo>\n </mrow>\n <annotation> $\\unicode{x0007E}$</annotation>\n </semantics></math>14% for our method compared to an increase of <math>\n <semantics>\n <mrow>\n <mo>~</mo>\n </mrow>\n <annotation> $\\unicode{x0007E}$</annotation>\n </semantics></math>75% for the best-performing registration method. The obtained average accuracy suggests that the NDT-6D registration methods can be used for in-field precision agriculture applications, for example, crop detection, size-based maturity estimation, and growth modeling.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"40 6","pages":"1603-1619"},"PeriodicalIF":4.2000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22194","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Registration of point cloud data containing both depth and color information is critical for a variety of applications, including in-field robotic plant manipulation, crop growth modeling, and autonomous navigation. However, current state-of-the-art registration methods often fail in challenging agricultural field conditions due to factors such as occlusions, plant density, and variable illumination. To address these issues, we propose the NDT-6D registration method, which is a color-based variation of the Normal Distribution Transform (NDT) registration approach for point clouds. Our method computes correspondences between pointclouds using both geometric and color information and minimizes the distance between these correspondences using only the three-dimensional (3D) geometric dimensions. We evaluate the method using the GRAPES3D data set collected with a commercial-grade RGB-D sensor mounted on a mobile platform in a vineyard. Results show that registration methods that only rely on depth information fail to provide quality registration for the tested data set. The proposed color-based variation outperforms state-of-the-art methods with a root mean square error (RMSE) of 1.1–1.6 cm for NDT-6D compared with 1.1–2.3 cm for other color-information-based methods and 1.2–13.7 cm for noncolor-information-based methods. The proposed method is shown to be robust against noises using the TUM RGBD data set by artificially adding noise present in an outdoor scenario. The relative pose error (RPE) increased 14% for our method compared to an increase of 75% for the best-performing registration method. The obtained average accuracy suggests that the NDT-6D registration methods can be used for in-field precision agriculture applications, for example, crop detection, size-based maturity estimation, and growth modeling.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.