Development of a highly efficient in-tube solid-phase microextraction system coupled with UHPLC-MS/MS for analyzing trace hydroxyl polycyclic aromatic hydrocarbons in biological samples
Qianchun Zhang, Xiaolan Zhang, Bingnian Yang, Shan Liu, Ming Wen, Linchun Bao, Li Jiang
{"title":"Development of a highly efficient in-tube solid-phase microextraction system coupled with UHPLC-MS/MS for analyzing trace hydroxyl polycyclic aromatic hydrocarbons in biological samples","authors":"Qianchun Zhang, Xiaolan Zhang, Bingnian Yang, Shan Liu, Ming Wen, Linchun Bao, Li Jiang","doi":"10.1002/jssc.202100751","DOIUrl":null,"url":null,"abstract":"<p>Hydroxyl polycyclic aromatic hydrocarbons are considered active mutagenic and carcinogenic substances and are found in extremely low levels (ng/g) in biological samples. As a result, their determination in urine and blood samples is challenging, and a sensitive and effective method for the analysis of trace hydroxyl polycyclic aromatic hydrocarbons in complex biological matrices is required. In this work, a novel macroporous in-tube solid-phase microextraction monolith was prepared via a thiol-yne click reaction, and a highly efficient analytical method based on in-tube solid-phase microextraction coupled with UHPLC-MS/MS was developed to determine hydroxyl polycyclic aromatic hydrocarbons with low detection limits of 0.137–11.0 ng/L in complex biological samples. Four hydroxyl polycyclic aromatic hydrocarbons, namely, 2-hydroxyanthraquinone, 1-hydroxypyrene, 1,8-dihydroxyanthraquinone, and 6-hydroxychrysene, were determined in the urine samples of smokers, non-smokers, and whole blood samples of mice. Satisfactory recoveries were achieved in the range of 83.1–113% with relative standard deviations of 3.2–9.7%. It was found that implementation of the macroporous monolith gave a highly efficient approach for enriching trace hydroxyl polycyclic aromatic hydrocarbons in biological samples.</p>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"45 4","pages":"919-928"},"PeriodicalIF":2.8000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.202100751","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Hydroxyl polycyclic aromatic hydrocarbons are considered active mutagenic and carcinogenic substances and are found in extremely low levels (ng/g) in biological samples. As a result, their determination in urine and blood samples is challenging, and a sensitive and effective method for the analysis of trace hydroxyl polycyclic aromatic hydrocarbons in complex biological matrices is required. In this work, a novel macroporous in-tube solid-phase microextraction monolith was prepared via a thiol-yne click reaction, and a highly efficient analytical method based on in-tube solid-phase microextraction coupled with UHPLC-MS/MS was developed to determine hydroxyl polycyclic aromatic hydrocarbons with low detection limits of 0.137–11.0 ng/L in complex biological samples. Four hydroxyl polycyclic aromatic hydrocarbons, namely, 2-hydroxyanthraquinone, 1-hydroxypyrene, 1,8-dihydroxyanthraquinone, and 6-hydroxychrysene, were determined in the urine samples of smokers, non-smokers, and whole blood samples of mice. Satisfactory recoveries were achieved in the range of 83.1–113% with relative standard deviations of 3.2–9.7%. It was found that implementation of the macroporous monolith gave a highly efficient approach for enriching trace hydroxyl polycyclic aromatic hydrocarbons in biological samples.
期刊介绍:
The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.