{"title":"Heat transport in low-dimensional systems","authors":"A. Dhar","doi":"10.1080/00018730802538522","DOIUrl":null,"url":null,"abstract":"Recent results on theoretical studies of heat conduction in low-dimensional systems are presented. These studies are on simple, yet non-trivial, models. Most of these are classical systems, but some quantum-mechanical work is also reported. Much of the work has been on lattice models corresponding to phononic systems, and some on hard-particle and hard-disc systems. A recently developed approach, using generalized Langevin equations and phonon Green's functions, is explained and several applications to harmonic systems are given. For interacting systems, various analytic approaches based on the Green–Kubo formula are described, and their predictions are compared with the latest results from simulation. These results indicate that for momentum-conserving systems, transport is anomalous in one and two dimensions, and the thermal conductivity κ diverges with system size L as κ ∼ L α. For one-dimensional interacting systems there is strong numerical evidence for a universal exponent α = 1/3, but there is no exact proof for this so far. A brief discussion of some of the experiments on heat conduction in nanowires and nanotubes is also given.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"57 1","pages":"457 - 537"},"PeriodicalIF":35.0000,"publicationDate":"2008-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730802538522","citationCount":"696","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018730802538522","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 696
Abstract
Recent results on theoretical studies of heat conduction in low-dimensional systems are presented. These studies are on simple, yet non-trivial, models. Most of these are classical systems, but some quantum-mechanical work is also reported. Much of the work has been on lattice models corresponding to phononic systems, and some on hard-particle and hard-disc systems. A recently developed approach, using generalized Langevin equations and phonon Green's functions, is explained and several applications to harmonic systems are given. For interacting systems, various analytic approaches based on the Green–Kubo formula are described, and their predictions are compared with the latest results from simulation. These results indicate that for momentum-conserving systems, transport is anomalous in one and two dimensions, and the thermal conductivity κ diverges with system size L as κ ∼ L α. For one-dimensional interacting systems there is strong numerical evidence for a universal exponent α = 1/3, but there is no exact proof for this so far. A brief discussion of some of the experiments on heat conduction in nanowires and nanotubes is also given.
期刊介绍:
Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.