{"title":"Advances of and by phase-field modelling in condensed-matter physics","authors":"H. Emmerich","doi":"10.1080/00018730701822522","DOIUrl":null,"url":null,"abstract":"Phase-field modelling is still a young discipline in condensed-matter physics, which established itself for the class of systems that can be characterised by domains of different phases separated by a distinct interface. Driven out of equilibrium, their dynamics result in the evolution of those interfaces which might develop into well defined-structures with characteristic length scales at the nano-, micro- or meso-scale. Since the material properties of such systems are to a large extent determined by those small-scale structures, acquiring a precise understanding of the mechanisms that drive the interfacial dynamics is a great challenge for scientists in this field. Phase-field modelling is an approach that allows this challenge to be tackled in a simulation-based manner. This review provides a critical overview of the conceptual background of the phase-field method, the most relevant fields of condensed-matter physics that have been approached using phase-field modelling, as well as the respective model formulations and the insight gained so far via their simulation and analysis. Moreover, we discuss directions of further development and the quality of the scientific contributions to be expected from those.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":35.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730701822522","citationCount":"206","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018730701822522","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 206
Abstract
Phase-field modelling is still a young discipline in condensed-matter physics, which established itself for the class of systems that can be characterised by domains of different phases separated by a distinct interface. Driven out of equilibrium, their dynamics result in the evolution of those interfaces which might develop into well defined-structures with characteristic length scales at the nano-, micro- or meso-scale. Since the material properties of such systems are to a large extent determined by those small-scale structures, acquiring a precise understanding of the mechanisms that drive the interfacial dynamics is a great challenge for scientists in this field. Phase-field modelling is an approach that allows this challenge to be tackled in a simulation-based manner. This review provides a critical overview of the conceptual background of the phase-field method, the most relevant fields of condensed-matter physics that have been approached using phase-field modelling, as well as the respective model formulations and the insight gained so far via their simulation and analysis. Moreover, we discuss directions of further development and the quality of the scientific contributions to be expected from those.
期刊介绍:
Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.