{"title":"Misfit dislocations in nanocomposites with quantum dots, nanowires and their ensembles","authors":"I. A. Ovid'ko, A. Sheinerman","doi":"10.1080/00018730600976684","DOIUrl":null,"url":null,"abstract":"We review theoretical concepts and experimental results on the physics of misfit dislocations in nanocomposite solids with quantum dots (QDs) and nanowires (quantum wires). Special attention is paid to thermodynamic theoretical models of formation of misfit dislocations in QDs and nanowires, including composite core–shell nanowires. The effects of misfit dislocations on the film growth mode during heteroepitaxy and phase transitions in QD systems are analysed. Experimental results and theoretical models of the ordered spatial arrangement of QDs growing on composite substrates with misfit dislocation networks are discussed. The influence of subsurface dislocations in composite substrates on the nucleation of QDs and nanowires on the substrate surface is considered. Models of misfit strain relaxation and dislocation formation in nanofilms on compliant substrates are also reviewed.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"55 1","pages":"627 - 689"},"PeriodicalIF":13.8000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730600976684","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018730600976684","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 40
Abstract
We review theoretical concepts and experimental results on the physics of misfit dislocations in nanocomposite solids with quantum dots (QDs) and nanowires (quantum wires). Special attention is paid to thermodynamic theoretical models of formation of misfit dislocations in QDs and nanowires, including composite core–shell nanowires. The effects of misfit dislocations on the film growth mode during heteroepitaxy and phase transitions in QD systems are analysed. Experimental results and theoretical models of the ordered spatial arrangement of QDs growing on composite substrates with misfit dislocation networks are discussed. The influence of subsurface dislocations in composite substrates on the nucleation of QDs and nanowires on the substrate surface is considered. Models of misfit strain relaxation and dislocation formation in nanofilms on compliant substrates are also reviewed.
期刊介绍:
Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.