Electric-Field-Induced Room-Temperature Antiferroelectric–Ferroelectric Phase Transition in van der Waals Layered GeSe

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2022-01-03 DOI:10.1021/acsnano.1c09183
Zhao Guan, Yifeng Zhao, Xiaoting Wang, Ni Zhong*, Xing Deng, Yunzhe Zheng, Jinjin Wang, Dongdong Xu, Ruru Ma, Fangyu Yue, Yan Cheng, Rong Huang, Pinghua Xiang, Zhongming Wei*, Junhao Chu, Chungang Duan*
{"title":"Electric-Field-Induced Room-Temperature Antiferroelectric–Ferroelectric Phase Transition in van der Waals Layered GeSe","authors":"Zhao Guan,&nbsp;Yifeng Zhao,&nbsp;Xiaoting Wang,&nbsp;Ni Zhong*,&nbsp;Xing Deng,&nbsp;Yunzhe Zheng,&nbsp;Jinjin Wang,&nbsp;Dongdong Xu,&nbsp;Ruru Ma,&nbsp;Fangyu Yue,&nbsp;Yan Cheng,&nbsp;Rong Huang,&nbsp;Pinghua Xiang,&nbsp;Zhongming Wei*,&nbsp;Junhao Chu,&nbsp;Chungang Duan*","doi":"10.1021/acsnano.1c09183","DOIUrl":null,"url":null,"abstract":"<p >Searching van der Waals ferroic materials that can work under ambient conditions is of critical importance for developing ferroic devices at the two-dimensional limit. Here we report the experimental discovery of electric-field-induced reversible antiferroelectric (AFE) to ferroelectric (FE) transition at room temperature in van der Waals layered α-GeSe, employing Raman spectroscopy, transmission electron microscopy, second-harmonic generation, and piezoelectric force microscopy consolidated by first-principles calculations. An orientation-dependent AFE–FE transition provides strong evidence that the in-plane (IP) polarization vector aligns along the armchair rather than zigzag direction in α-GeSe. In addition, temperature-dependent Raman spectra showed that the IP polarization could sustain up to higher than 700 K. Our findings suggest that α-GeSe, which is also a potential ferrovalley material, could be a robust building block for creating artificial 2D multiferroics at room temperature.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"16 1","pages":"1308–1317"},"PeriodicalIF":16.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.1c09183","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 18

Abstract

Searching van der Waals ferroic materials that can work under ambient conditions is of critical importance for developing ferroic devices at the two-dimensional limit. Here we report the experimental discovery of electric-field-induced reversible antiferroelectric (AFE) to ferroelectric (FE) transition at room temperature in van der Waals layered α-GeSe, employing Raman spectroscopy, transmission electron microscopy, second-harmonic generation, and piezoelectric force microscopy consolidated by first-principles calculations. An orientation-dependent AFE–FE transition provides strong evidence that the in-plane (IP) polarization vector aligns along the armchair rather than zigzag direction in α-GeSe. In addition, temperature-dependent Raman spectra showed that the IP polarization could sustain up to higher than 700 K. Our findings suggest that α-GeSe, which is also a potential ferrovalley material, could be a robust building block for creating artificial 2D multiferroics at room temperature.

Abstract Image

范德华层状GeSe中电场诱导的室温反铁电-铁电相变
寻找能在环境条件下工作的范德华铁性材料对于开发二维极限的铁性器件至关重要。本文报道了利用拉曼光谱、透射电子显微镜、二次谐波生成和基于第一性原理计算的压电力显微镜,在室温下范德华层状α-GeSe中电场诱导可逆反铁电(AFE)向铁电(FE)转变的实验发现。方向相关的fe - fe跃变有力地证明了α-GeSe中面内偏振矢量沿扶手椅而不是之字形方向排列。此外,温度相关的拉曼光谱表明,激电极化可以持续到700 K以上。我们的研究结果表明,α-GeSe也是一种潜在的铁谷材料,可能是在室温下制造人工二维多铁质材料的强大基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信