{"title":"Photomagnetically Powered Spiky Nanomachines with Thermal Control of Viscosity for Enhanced Cancer Mechanotherapy","authors":"Chang Xu, Yali Liu, Jiayan Li, Peng Ning, Zhong Shi, Wei Zhang, Zhenguang Li, Ruimei Zhou, Yifan Tong, Yingze Li, Cheng Lv, Yajing Shen, Qian Cheng, Bin He, Yu Cheng","doi":"10.1002/adma.202204996","DOIUrl":null,"url":null,"abstract":"<p>Nanomachines with active propulsion have emerged as an intelligent platform for targeted cancer therapy. Achieving an efficient locomotion performance using an external energy conversion is a key requirement in the design of nanomachines. In this study, inspired by diverse spiky structures in nature, a photomagnetically powered nanomachine (PMN) with a spiky surface and thermally dependent viscosity tunability is proposed to facilitate mechanical motion in lysosomes for cancer mechanotherapy. The hybrid nanomachine is integrated with magnetic nanoparticles as the core and covered with gold nanotips. Physical simulations and experimental results prove that the spiky structure endows nanomachines with an obvious photomagnetic coupling effect in the NIR-II region through the alignment and orienting movement of plasmons on the gold tips. Using a coupling-enhanced magnetic field, PMNs are efficiently assembled into chain-like structures to further elevate energy conversion efficiency. Notably, PMNs with the thermal control of viscosity are efficiently propelled under simultaneously applied dual external energy sources in cell lysosomes. Enhanced mechanical destruction of cancer cells via PMNs is confirmed both in vitro and in vivo under photomagnetic treatment. This study provides a new direction for designing integrated nanomachines with active adaptability to physiological environments for cancer treatment.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"35 8","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202204996","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Nanomachines with active propulsion have emerged as an intelligent platform for targeted cancer therapy. Achieving an efficient locomotion performance using an external energy conversion is a key requirement in the design of nanomachines. In this study, inspired by diverse spiky structures in nature, a photomagnetically powered nanomachine (PMN) with a spiky surface and thermally dependent viscosity tunability is proposed to facilitate mechanical motion in lysosomes for cancer mechanotherapy. The hybrid nanomachine is integrated with magnetic nanoparticles as the core and covered with gold nanotips. Physical simulations and experimental results prove that the spiky structure endows nanomachines with an obvious photomagnetic coupling effect in the NIR-II region through the alignment and orienting movement of plasmons on the gold tips. Using a coupling-enhanced magnetic field, PMNs are efficiently assembled into chain-like structures to further elevate energy conversion efficiency. Notably, PMNs with the thermal control of viscosity are efficiently propelled under simultaneously applied dual external energy sources in cell lysosomes. Enhanced mechanical destruction of cancer cells via PMNs is confirmed both in vitro and in vivo under photomagnetic treatment. This study provides a new direction for designing integrated nanomachines with active adaptability to physiological environments for cancer treatment.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.