{"title":"Piezo-Photocatalysis over Metal–Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect","authors":"Chenxi Zhang, Da Lei, Chenfan Xie, Xiaoshuai Hang, Chuanxin He, Hai-Long Jiang","doi":"10.1002/adma.202106308","DOIUrl":null,"url":null,"abstract":"<p>The built-in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal–organic frameworks (MOFs), i.e., UiO-66-NH<sub>2</sub>(Zr) and UiO-66-NH<sub>2</sub>(Hf), are adopted for piezo-photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf-oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO-66-NH<sub>2</sub>(Hf) exhibits ≈2.2 times of activity compared with that of UiO-66-NH<sub>2</sub>(Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H<sub>2</sub> production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo-photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO-66-NH<sub>2</sub>(Hf).</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"33 51","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202106308","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 89
Abstract
The built-in electric field can be generated in the piezoelectric materials under mechanical stress. The resulting piezoelectric effect is beneficial to charge separation in photocatalysis. Meanwhile, the mechanical stress usually gives rise to accelerated mass transfer and enhanced catalytic activity. Unfortunately, it remains a challenge to differentiate the contribution of these two factors to catalytic performance. Herein, for the first time, isostructural metal–organic frameworks (MOFs), i.e., UiO-66-NH2(Zr) and UiO-66-NH2(Hf), are adopted for piezo-photocatalysis. Both MOFs, featuring the same structures except for diverse Zr/Hf-oxo clusters, possess distinctly different piezoelectric properties. Strikingly, UiO-66-NH2(Hf) exhibits ≈2.2 times of activity compared with that of UiO-66-NH2(Zr) under simultaneous light and ultrasonic irradiation, though both MOFs display similar activity in the photocatalytic H2 production without ultrasonic irradiation. Given their similar pore features and mass transfer behaviors, the activity difference is unambiguously assignable to the piezoelectric effect. As a result, the contributions of the piezoelectric effect to the piezo-photocatalysis can be clearly distinguished owing to the stronger piezoelectric property of UiO-66-NH2(Hf).
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.