Xuhong Hu, A. Koudymov, G. Simin, J. Yang, M. Khan, A. Tarakji, M. Shur, R. Gaska
{"title":"Si3N4/AlGaN/GaN–metal–insulator–semiconductor heterostructure field–effect transistors","authors":"Xuhong Hu, A. Koudymov, G. Simin, J. Yang, M. Khan, A. Tarakji, M. Shur, R. Gaska","doi":"10.1063/1.1412591","DOIUrl":null,"url":null,"abstract":"We report on a metal–insulator–semiconductor heterostructure field-effect transistor (MISHFET) using Si3N4 film simultaneously for channel passivation and as a gate insulator. This design results in increased radio-frequency (rf) powers by reduction of the current collapse and it reduces the gate leakage currents by four orders of magnitude. A MISHFET room temperature gate current of about 90 pA/mm increases to only 1000 pA/mm at ambient temperature as high as 300 °C. Pulsed measurements show that unlike metal–oxide–semiconductor HFETs and regular HFETs, in a Si3N4 MISHFET, the gate voltage amplitude required for current collapse is much higher than the threshold voltage. Therefore, it exhibits significantly reduced rf current collapse.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"31 1","pages":"2832-2834"},"PeriodicalIF":3.6000,"publicationDate":"2001-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.1412591","citationCount":"237","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/1.1412591","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 237
Abstract
We report on a metal–insulator–semiconductor heterostructure field-effect transistor (MISHFET) using Si3N4 film simultaneously for channel passivation and as a gate insulator. This design results in increased radio-frequency (rf) powers by reduction of the current collapse and it reduces the gate leakage currents by four orders of magnitude. A MISHFET room temperature gate current of about 90 pA/mm increases to only 1000 pA/mm at ambient temperature as high as 300 °C. Pulsed measurements show that unlike metal–oxide–semiconductor HFETs and regular HFETs, in a Si3N4 MISHFET, the gate voltage amplitude required for current collapse is much higher than the threshold voltage. Therefore, it exhibits significantly reduced rf current collapse.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.