{"title":"Genetic divergence and local adaptation of Liriodendron driven by heterogeneous environments","authors":"Yufang Shen, Hui Xia, Zhonghua Tu, Yaxian Zong, Lichun Yang, Huogen Li","doi":"10.1111/mec.16271","DOIUrl":null,"url":null,"abstract":"<p>Ecological adaptive differentiation alters both the species diversity and intraspecific genetic diversity in forests, thus affecting the stability of forest ecosystems. Therefore, knowledge of the genetic underpinnings of the ecological adaptive differentiation of forest species is critical for effective species conservation. In this study, single-nucleotide polymorphisms (SNPs) from population transcriptomes were used to investigate the spatial distribution of genetic variation in <i>Liriodendron</i> to assess whether environmental variables can explain genetic divergence. We examined the contributions of environmental variables to population divergence and explored the genetic underpinnings of local adaptation using a landscape genomic approach. Niche models and statistical analyses showed significant niche divergence between <i>L</i>. <i>chinense</i> and <i>L</i>. <i>tulipifera</i>, suggesting that ecological adaptation may play a crucial role in driving interspecific divergence. We detected a new fine-scale genetic structure in <i>L</i>. <i>chinense</i>, and divergence of the six groups occurred during the late Pliocene to early Pleistocene. Redundancy analysis (RDA) revealed significant associations between genetic variation and multiple environmental variables. Environmental association analyses identified 67 environmental association loci (EALs; nonsynonymous SNPs) that underwent interspecific or intraspecific differentiation, 28 of which were associated with adaptive genes. These 28 candidate adaptive loci provide substantial evidence for local adaptation in <i>Liriodendron</i>. Our findings reveal ecological adaptive divergence pattern between <i>Liriodendron</i> species and provide novel insight into the role of heterogeneous environments in shaping genetic structure and driving local adaptation among populations, informing future <i>L</i>. <i>chinense</i> conservation efforts.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"31 3","pages":"916-933"},"PeriodicalIF":3.9000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.16271","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 11
Abstract
Ecological adaptive differentiation alters both the species diversity and intraspecific genetic diversity in forests, thus affecting the stability of forest ecosystems. Therefore, knowledge of the genetic underpinnings of the ecological adaptive differentiation of forest species is critical for effective species conservation. In this study, single-nucleotide polymorphisms (SNPs) from population transcriptomes were used to investigate the spatial distribution of genetic variation in Liriodendron to assess whether environmental variables can explain genetic divergence. We examined the contributions of environmental variables to population divergence and explored the genetic underpinnings of local adaptation using a landscape genomic approach. Niche models and statistical analyses showed significant niche divergence between L. chinense and L. tulipifera, suggesting that ecological adaptation may play a crucial role in driving interspecific divergence. We detected a new fine-scale genetic structure in L. chinense, and divergence of the six groups occurred during the late Pliocene to early Pleistocene. Redundancy analysis (RDA) revealed significant associations between genetic variation and multiple environmental variables. Environmental association analyses identified 67 environmental association loci (EALs; nonsynonymous SNPs) that underwent interspecific or intraspecific differentiation, 28 of which were associated with adaptive genes. These 28 candidate adaptive loci provide substantial evidence for local adaptation in Liriodendron. Our findings reveal ecological adaptive divergence pattern between Liriodendron species and provide novel insight into the role of heterogeneous environments in shaping genetic structure and driving local adaptation among populations, informing future L. chinense conservation efforts.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms