Protracted oxygenation across the Cambrian–Ordovician transition: A key initiator of the Great Ordovician Biodiversification Event?

IF 2.7 2区 地球科学 Q2 BIOLOGY
Geobiology Pub Date : 2023-01-26 DOI:10.1111/gbi.12545
Nevin P. Kozik, Seth A. Young, Anders Lindskog, Per Ahlberg, Jeremy D. Owens
{"title":"Protracted oxygenation across the Cambrian–Ordovician transition: A key initiator of the Great Ordovician Biodiversification Event?","authors":"Nevin P. Kozik,&nbsp;Seth A. Young,&nbsp;Anders Lindskog,&nbsp;Per Ahlberg,&nbsp;Jeremy D. Owens","doi":"10.1111/gbi.12545","DOIUrl":null,"url":null,"abstract":"<p>Fluctuations in marine oxygen concentrations have been invoked as a primary driver for changes in biodiversity throughout Earth history. Expansions in reducing marine conditions are commonly invoked as key causal mechanisms for mass extinctions, while increases in marine oxygenation are becoming an increasingly common causal mechanism invoked for biodiversification events. Here we utilize a multiproxy approach to constrain local and global marine paleoredox conditions throughout the late Cambrian–Early Ordovician from two drill core successions in Baltoscandia. Local paleoredox proxies such as manganese concentrations and iron speciation reveal that both sites in the Baltic paleobasin had persistently anoxic and predominantly euxinic (anoxic and sulfidic) bottom water conditions throughout the study interval. Corresponding trace metal datasets indicate nuanced contraction and expansion of global anoxic and euxinic conditions along continental margins during the late Cambrian–Early Ordovician. Lastly, thallium isotope data from these locally reducing sections suggest a global expansion of oxygenated shelf and deeper marine environments from the late Cambrian into the Early Ordovician. This evidence for increasingly oxic marine environments coincides with increases in burrowing depth and tiering in marine animals, as well as diversification of body fossils throughout this ~8-million-year interval. The collective geochemical datasets provide some of the first direct paleoredox evidence for an increase in marine oxygen concentrations as a key mechanism for the Ordovician radiation of marine life.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 3","pages":"323-340"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12545","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Fluctuations in marine oxygen concentrations have been invoked as a primary driver for changes in biodiversity throughout Earth history. Expansions in reducing marine conditions are commonly invoked as key causal mechanisms for mass extinctions, while increases in marine oxygenation are becoming an increasingly common causal mechanism invoked for biodiversification events. Here we utilize a multiproxy approach to constrain local and global marine paleoredox conditions throughout the late Cambrian–Early Ordovician from two drill core successions in Baltoscandia. Local paleoredox proxies such as manganese concentrations and iron speciation reveal that both sites in the Baltic paleobasin had persistently anoxic and predominantly euxinic (anoxic and sulfidic) bottom water conditions throughout the study interval. Corresponding trace metal datasets indicate nuanced contraction and expansion of global anoxic and euxinic conditions along continental margins during the late Cambrian–Early Ordovician. Lastly, thallium isotope data from these locally reducing sections suggest a global expansion of oxygenated shelf and deeper marine environments from the late Cambrian into the Early Ordovician. This evidence for increasingly oxic marine environments coincides with increases in burrowing depth and tiering in marine animals, as well as diversification of body fossils throughout this ~8-million-year interval. The collective geochemical datasets provide some of the first direct paleoredox evidence for an increase in marine oxygen concentrations as a key mechanism for the Ordovician radiation of marine life.

寒武纪-奥陶系过渡时期的长期氧化作用:奥陶系生物多样性大事件的关键发起者?
海洋氧浓度的波动被认为是整个地球历史上生物多样性变化的主要驱动因素。海洋环境恶化的扩大通常被认为是大规模灭绝的主要原因机制,而海洋氧化作用的增加正成为生物多样化事件的一个日益普遍的原因机制。本文利用多代理方法对Baltoscandia地区晚寒武世-早奥陶世两个岩心序列的局部和全球海洋古氧化还原条件进行了约束。当地的古氧化还原指标(如锰浓度和铁形态)表明,在整个研究期间,波罗的海古盆地的两个地点都具有持续的缺氧和主要的缺氧(缺氧和硫化物)底水条件。相应的微量金属数据表明,在晚寒武世-早奥陶世期间,沿大陆边缘的全球缺氧和缺氧条件发生了细微的收缩和扩张。最后,这些局部还原剖面的铊同位素数据表明,从晚寒武世到早奥陶世,氧合陆架和更深的海洋环境在全球范围内扩张。在这大约800万年的时间里,海洋环境的氧气含量越来越高的证据与海洋动物的穴居深度和分层的增加以及身体化石的多样化相吻合。集体地球化学数据集提供了一些直接的古氧化还原证据,表明海洋氧浓度的增加是奥陶纪海洋生物辐射的关键机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geobiology
Geobiology 生物-地球科学综合
CiteScore
6.80
自引率
5.40%
发文量
56
审稿时长
3 months
期刊介绍: The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time. Geobiology invites submission of high-quality articles in the following areas: Origins and evolution of life Co-evolution of the atmosphere, hydrosphere and biosphere The sedimentary rock record and geobiology of critical intervals Paleobiology and evolutionary ecology Biogeochemistry and global elemental cycles Microbe-mineral interactions Biomarkers Molecular ecology and phylogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信