Xiaodong Zhao, Huaji Pang, Dekang Huang, Gang Liu, Jianxiang Hu, Prof. Yonggang Xiang
{"title":"Construction of Ultrastable Nonsubstituted Quinoline-Bridged Covalent Organic Frameworks via Rhodium-Catalyzed Dehydrogenative Annulation","authors":"Xiaodong Zhao, Huaji Pang, Dekang Huang, Gang Liu, Jianxiang Hu, Prof. Yonggang Xiang","doi":"10.1002/anie.202208833","DOIUrl":null,"url":null,"abstract":"<p>Exploring new routes to lock the dynamic C=N bonds in imine-linked covalent organic frameworks (COFs) is highly desired for enhancing their stability and functionality. Herein, a novel C=N bridge locking strategy via rhodium-catalyzed [4+2] annulation is developed to construct nonsubstituted quinoline-linked COFs (NQ-COFs). The notable feature of this strategy includes high C=N conversion efficiency, oxidant-free, and generality for synthesis of a variety of NQ-COFs with high chemical stability. Particularly, after post-synthetic modification, the crystallinity, topology, and porosity of pristine imine-linked COFs are well retained. When used as photocatalysts, NQ-COFs display better visible light absorption and carriers’ separation efficiency due to enhanced in-plane π conjugation ability, as well as more facile generation of superoxide anion radicals than their counterparts, thus leading to efficient synthesis of 2,4,6-tris(aryl)pyridines, benzimidazole, and sulfoxide derivatives.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"61 41","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202208833","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Exploring new routes to lock the dynamic C=N bonds in imine-linked covalent organic frameworks (COFs) is highly desired for enhancing their stability and functionality. Herein, a novel C=N bridge locking strategy via rhodium-catalyzed [4+2] annulation is developed to construct nonsubstituted quinoline-linked COFs (NQ-COFs). The notable feature of this strategy includes high C=N conversion efficiency, oxidant-free, and generality for synthesis of a variety of NQ-COFs with high chemical stability. Particularly, after post-synthetic modification, the crystallinity, topology, and porosity of pristine imine-linked COFs are well retained. When used as photocatalysts, NQ-COFs display better visible light absorption and carriers’ separation efficiency due to enhanced in-plane π conjugation ability, as well as more facile generation of superoxide anion radicals than their counterparts, thus leading to efficient synthesis of 2,4,6-tris(aryl)pyridines, benzimidazole, and sulfoxide derivatives.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.