Fullerene-derived nanocomposite as an efficient electrocatalyst for overall water splitting and Zn–air battery

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yongqiang Feng, Xu Li, Qingqing Liu, Wenjie Zhu, Xuemeng Huo, Mengting Gao, Wanwan Liu, Ying Wang and Ying Wei
{"title":"Fullerene-derived nanocomposite as an efficient electrocatalyst for overall water splitting and Zn–air battery","authors":"Yongqiang Feng, Xu Li, Qingqing Liu, Wenjie Zhu, Xuemeng Huo, Mengting Gao, Wanwan Liu, Ying Wang and Ying Wei","doi":"10.1039/D3QM00723E","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen energy has been regarded as a potential energy source for the future economy. In order to realize the clean and efficient utilization of hydrogen energy, sustainable energy conversion technology needs to be developed. Overall water splitting (OWS) and zinc–air batteries (ZAB), which involve the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), are two typical energy storage and conversion techniques. However, they are limited by slow reaction kinetics and high thermodynamic overpotential, and thus require highly active, stable and low-cost catalysts to overcome this energy barrier. In recent years, carbon-based electrocatalysts have attracted increasingly more attention due to their various advantages, among which fullerene is regarded as a promising material due to its definite molecular structure and excellent electron acceptability. In this study, the synthesis methods of fullerene-based electrocatalysts commonly used in recent years are first summarized. Then, their applications are reviewed from the aspects of HER, OER, ORR, OWS, and ZAB, as well as carbon dioxide reduction reaction (CO<small><sub>2</sub></small>RR) and methanol oxidation reaction (MOR). Finally, a brief outlook and prospective for future investigations on the design and construction of novel fullerene-based electrocatalysts and related mechanism analysis is also provided.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 24","pages":" 6446-6462"},"PeriodicalIF":6.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/qm/d3qm00723e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen energy has been regarded as a potential energy source for the future economy. In order to realize the clean and efficient utilization of hydrogen energy, sustainable energy conversion technology needs to be developed. Overall water splitting (OWS) and zinc–air batteries (ZAB), which involve the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), are two typical energy storage and conversion techniques. However, they are limited by slow reaction kinetics and high thermodynamic overpotential, and thus require highly active, stable and low-cost catalysts to overcome this energy barrier. In recent years, carbon-based electrocatalysts have attracted increasingly more attention due to their various advantages, among which fullerene is regarded as a promising material due to its definite molecular structure and excellent electron acceptability. In this study, the synthesis methods of fullerene-based electrocatalysts commonly used in recent years are first summarized. Then, their applications are reviewed from the aspects of HER, OER, ORR, OWS, and ZAB, as well as carbon dioxide reduction reaction (CO2RR) and methanol oxidation reaction (MOR). Finally, a brief outlook and prospective for future investigations on the design and construction of novel fullerene-based electrocatalysts and related mechanism analysis is also provided.

Abstract Image

富勒烯基纳米复合材料作为整体水分解和锌空气电池的高效电催化剂
氢能被认为是未来经济的潜在能源。为了实现氢能源的清洁高效利用,需要开发可持续的能源转换技术。全水分解(OWS)和锌-空气电池(ZAB)是两种典型的储能转化技术,涉及析氢反应(HER)、析氧反应(OER)和氧还原反应(ORR)。然而,它们受到反应动力学缓慢和高热力学过电位的限制,因此需要高活性、稳定和低成本的催化剂来克服这一能量障碍。近年来,碳基电催化剂因其各种优点受到越来越多的关注,其中富勒烯因其明确的分子结构和优异的电子可接受性而被认为是一种很有前途的材料。本文首先综述了近年来常用的富勒烯基电催化剂的合成方法。然后从HER、OER、ORR、OWS、ZAB以及二氧化碳还原反应(CO2RR)、甲醇氧化反应(MOR)等方面综述了它们的应用。最后,对新型富勒烯电催化剂的设计、构建及机理分析等方面的研究进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信