Solving the problem of biodiversity analysis of bird detection and classification in the video stream of camera traps

Mikhail G. Dorrer, A. Alekhina
{"title":"Solving the problem of biodiversity analysis of bird detection and classification in the video stream of camera traps","authors":"Mikhail G. Dorrer, A. Alekhina","doi":"10.1051/e3sconf/202339003011","DOIUrl":null,"url":null,"abstract":"The work is devoted to solving the problem of assessing the comparative efficiency of several common architectures of convolutional neural networks for monitoring birds in a natural environment. The problem was solved by detecting birds recorded by video traps installed on feeders in several regions of Panama by different architectures. Then a comparison was made between the recognition quality metrics – IoU and mAP, and based on the values of the metrics, a conclusion was made about the effectiveness of the architectures. Experiments have shown that the YOLO architecture of the Tiny version with comparative modules wins in the accuracy table. In the future, it is planned to improve the application of neural network architectures by finalizing the dataset with the involvement of expert bird watchers and open ornithological ontologies.","PeriodicalId":11445,"journal":{"name":"E3S Web of Conferences","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E3S Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/e3sconf/202339003011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The work is devoted to solving the problem of assessing the comparative efficiency of several common architectures of convolutional neural networks for monitoring birds in a natural environment. The problem was solved by detecting birds recorded by video traps installed on feeders in several regions of Panama by different architectures. Then a comparison was made between the recognition quality metrics – IoU and mAP, and based on the values of the metrics, a conclusion was made about the effectiveness of the architectures. Experiments have shown that the YOLO architecture of the Tiny version with comparative modules wins in the accuracy table. In the future, it is planned to improve the application of neural network architectures by finalizing the dataset with the involvement of expert bird watchers and open ornithological ontologies.
解决了摄像机陷阱视频流中鸟类检测与分类的生物多样性分析问题
这项工作致力于解决评估几种常见的卷积神经网络结构在自然环境中监测鸟类的相对效率的问题。这个问题通过在巴拿马几个地区不同建筑的喂食器上安装的视频陷阱来检测鸟类来解决。然后对IoU和mAP两种识别质量度量进行了比较,并根据度量值得出了体系结构有效性的结论。实验表明,带有比较模块的微型版本的YOLO架构在精度表中胜出。在未来,计划通过在专家鸟类观察者和开放的鸟类本体的参与下完成数据集来改进神经网络架构的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
E3S Web of Conferences
E3S Web of Conferences Energy-Energy (all)
CiteScore
0.90
自引率
0.00%
发文量
1133
期刊介绍: E3S Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings in all areas related to Environment, Energy and Earth Sciences. The journal covers the technological and scientific aspects as well as social and economic matters. Major disciplines include: soil sciences, hydrology, oceanography, climatology, geology, geography, energy engineering (production, distribution and storage), renewable energy, sustainable development, natural resources management… E3S Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信