Numerical Evaluation of Slope Stability based on Temporal Variation of Hydraulic Conductivity

Alinda Gupta, Md. Azijul Islam, Md Jobair Bin Alam
{"title":"Numerical Evaluation of Slope Stability based on Temporal Variation of Hydraulic Conductivity","authors":"Alinda Gupta, Md. Azijul Islam, Md Jobair Bin Alam","doi":"10.1051/e3sconf/202338224003","DOIUrl":null,"url":null,"abstract":"Slope failure is a common phenomenon all over the world on both man-made and natural slopes. Prolonged rainfall is one of the climatic factors which is largely responsible for slope failure. During heavy and prolonged rainfall, a part of the rainwater infiltrates through the soil and seeps into the slope. The infiltrated water lowers the matric suction and increases the porewater pressure. Eventually, the generated porewater pressure decreases the strength of the soil which results in slope failures. To evaluate the effect of rainwater seepage on slope stability, it is necessary to investigate the hydraulic conductivity of the slope soil. The objective of this study is to evaluate the effect of hydraulic conductivity on slope failure mechanisms. A finite element analysis of slope stability was conducted using Geo-Studio software. A numerical model was developed and calibrated with field monitoring data. The field monitoring data included the observation of hydraulic conductivity using a Guelph Permeameter. Afterward, the temporal variation of rainfall and hydraulic conductivity was incorporated into the SEEP/W program and the consequent changes in slope stability were evaluated in SLOPE/W. From the numerical analysis, with the identical strength parameters of the soil, different factors of safety were observed when the slope sections retain different hydraulic properties. Based on the numerical analysis, it was observed that hydraulic conductivity greater than 4×10-6 cm/s leads to slope failure. Periodic monitoring of hydraulic conductivity in the field may provide deep insight into rainfall-induced slope failures.","PeriodicalId":11445,"journal":{"name":"E3S Web of Conferences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E3S Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/e3sconf/202338224003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Slope failure is a common phenomenon all over the world on both man-made and natural slopes. Prolonged rainfall is one of the climatic factors which is largely responsible for slope failure. During heavy and prolonged rainfall, a part of the rainwater infiltrates through the soil and seeps into the slope. The infiltrated water lowers the matric suction and increases the porewater pressure. Eventually, the generated porewater pressure decreases the strength of the soil which results in slope failures. To evaluate the effect of rainwater seepage on slope stability, it is necessary to investigate the hydraulic conductivity of the slope soil. The objective of this study is to evaluate the effect of hydraulic conductivity on slope failure mechanisms. A finite element analysis of slope stability was conducted using Geo-Studio software. A numerical model was developed and calibrated with field monitoring data. The field monitoring data included the observation of hydraulic conductivity using a Guelph Permeameter. Afterward, the temporal variation of rainfall and hydraulic conductivity was incorporated into the SEEP/W program and the consequent changes in slope stability were evaluated in SLOPE/W. From the numerical analysis, with the identical strength parameters of the soil, different factors of safety were observed when the slope sections retain different hydraulic properties. Based on the numerical analysis, it was observed that hydraulic conductivity greater than 4×10-6 cm/s leads to slope failure. Periodic monitoring of hydraulic conductivity in the field may provide deep insight into rainfall-induced slope failures.
基于水力导率时间变化的边坡稳定性数值评价
在世界范围内,无论是人工边坡还是天然边坡,边坡失稳都是一种普遍现象。长时间降雨是造成边坡失稳的主要气候因素之一。在长时间的强降雨中,一部分雨水穿过土壤渗入斜坡。渗透水降低了基质吸力,增加了孔隙水压力。最终,产生的孔隙水压力降低了土体的强度,导致边坡破坏。为了评价雨水渗流对边坡稳定性的影响,有必要对边坡土的水导性进行研究。本研究的目的是评估水力导率对边坡破坏机制的影响。利用Geo-Studio软件对边坡稳定性进行有限元分析。建立了一个数值模型,并根据现场监测数据进行了校正。现场监测数据包括使用圭尔夫渗透率仪观察水力导电性。然后,将降雨和水力导率的时间变化纳入SEEP/W程序,并在slope /W中评估边坡稳定性的变化。从数值分析来看,在土体强度参数相同的情况下,边坡断面保持不同水力特性时的安全系数不同。通过数值分析可知,导水系数大于4×10-6 cm/s会导致边坡破坏。定期监测现场的水力导电性可以深入了解降雨引起的边坡破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
E3S Web of Conferences
E3S Web of Conferences Energy-Energy (all)
CiteScore
0.90
自引率
0.00%
发文量
1133
期刊介绍: E3S Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings in all areas related to Environment, Energy and Earth Sciences. The journal covers the technological and scientific aspects as well as social and economic matters. Major disciplines include: soil sciences, hydrology, oceanography, climatology, geology, geography, energy engineering (production, distribution and storage), renewable energy, sustainable development, natural resources management… E3S Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信