d0 Magnetic Skyrmions in Two-Dimensional Lattice

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kaiying Dou, Zhonglin He, Wenhui Du, Ying Dai, Baibiao Huang, Yandong Ma
{"title":"d0 Magnetic Skyrmions in Two-Dimensional Lattice","authors":"Kaiying Dou,&nbsp;Zhonglin He,&nbsp;Wenhui Du,&nbsp;Ying Dai,&nbsp;Baibiao Huang,&nbsp;Yandong Ma","doi":"10.1002/adfm.202301817","DOIUrl":null,"url":null,"abstract":"<p>Magnetic skyrmions are topologically protected chiral spin textures that hold great promise for information storage and processing. The current research efforts on magnetic skyrmions are exclusively based on <i>d</i>-orbital magnetism, which restricts their existence in a narrow window of <i>temperature-external magnetic field (T-B)</i> phase diagram. Herein, employing first-principles and Monte-Carlo simulations, the work reports the identification of <i>d</i><sup>0</sup> magnetic skyrmions in 2D lattice of Tl<sub>2</sub>NO<sub>2</sub>. Arising from inversion asymmetry and strong spin-orbit coupling compensated by ligand of heavy element, large Dzyaloshinskii–Moriya interaction is obtained in monolayer Tl<sub>2</sub>NO<sub>2</sub>. This, competed with <i>p</i>-orbital exchange interaction, leads to the <i>d</i><sup>0</sup> skyrmion physics under external magnetic field. Importantly, different from <i>d</i>-orbital topological magnetism, the <i>d</i><sup>0</sup> magnetic skyrmions can be stabilized in a wide window of <i>T</i>-<i>B</i> phase diagram. The underlying physics is related to the small magnetic moment and delocalization character of <i>d</i><sup>0</sup> magnetism. Furthermore, the work also demonstrates that the <i>d</i><sup>0</sup> magnetic skyrmions are strongly coupled with ferroelectricity. These findings open a new direction for magnetic skyrmion research.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 28","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202301817","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic skyrmions are topologically protected chiral spin textures that hold great promise for information storage and processing. The current research efforts on magnetic skyrmions are exclusively based on d-orbital magnetism, which restricts their existence in a narrow window of temperature-external magnetic field (T-B) phase diagram. Herein, employing first-principles and Monte-Carlo simulations, the work reports the identification of d0 magnetic skyrmions in 2D lattice of Tl2NO2. Arising from inversion asymmetry and strong spin-orbit coupling compensated by ligand of heavy element, large Dzyaloshinskii–Moriya interaction is obtained in monolayer Tl2NO2. This, competed with p-orbital exchange interaction, leads to the d0 skyrmion physics under external magnetic field. Importantly, different from d-orbital topological magnetism, the d0 magnetic skyrmions can be stabilized in a wide window of T-B phase diagram. The underlying physics is related to the small magnetic moment and delocalization character of d0 magnetism. Furthermore, the work also demonstrates that the d0 magnetic skyrmions are strongly coupled with ferroelectricity. These findings open a new direction for magnetic skyrmion research.

Abstract Image

60二维晶格中的磁Skyrmions
磁skyrmions是一种受拓扑保护的手性自旋织构,在信息存储和处理方面具有很大的前景。目前对磁天子的研究仅基于d轨道磁,这限制了它们存在于温度-外磁场(T-B)相图的狭窄窗口中。本文利用第一性原理和蒙特卡罗模拟,报道了在Tl2NO2的二维晶格中识别出的60个磁天幕。由于反转不对称和重元素配体补偿的强自旋轨道耦合,单层Tl2NO2中存在较大的Dzyaloshinskii-Moriya相互作用。这种相互作用与p轨道交换相互作用相竞争,导致了外磁场下的粒子物理现象。重要的是,与d轨道拓扑磁性不同的是,d轨道拓扑磁可以在T-B相图的宽窗口中稳定。其潜在的物理特性与磁的小磁矩和离域特性有关。此外,该工作还证明了磁性粒子与铁电性强耦合。这些发现为磁离子的研究开辟了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信